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Abstract—In this paper, the achievable performance of Reed–Solomon
(RS)-coded slow-frequency-hopping assisted M-ary frequency-shift key-
ing using various erasure-insertion (EI) schemes is investigated when com-
municating over uncorrelated Rayleigh fading channels in the presence of
multitone jamming. Three different EI schemes are considered, which are
based on the output threshold test, on the ratio threshold test, and on the
joint maximum output–ratio threshold test. The relevant statistics of these
EI schemes are investigated mathematically, and based on these statistics,
their performance is evaluated in the context of RS error-and-erasure
decoding (EED). It is demonstrated that the system performance can be
significantly improved by using EED, invoking the EI schemes considered.

Index Terms—Error-and-erasure decoding (EED), maximum output–
ratio threshold test (MO-RTT), output threshold test (OTT), ratio thresh-
old test (RTT), slow frequency hopping (SFH), tone jamming (TJ).

I. INTRODUCTION

In slow-frequency-hopping (SFH) systems using M -ary frequency-
shift-keying (MFSK) modulation and Reed–Solomon (RS) coding,
error-and-erasure decoding (EED) is typically employed for enhancing
the achievable system performance when encountering interference
and/or jamming. Erasure insertion (EI) is a technique which marks an
RS-coded MFSK symbol as an erasure if it is deemed to be unreliable,
owing to fading, interference, or jamming. It is well known that an
efficient EI scheme is capable of significantly enhancing the error-
correcting capability of an RS code.

Various EI schemes designed for supporting EED in conjunction
with SFH MFSK using RS codes have been proposed in the literature
[1]–[6], and the so-called Bayesian EI [2], [3] is capable of achieving
the best bit-error-ratio (BER) performance. However, the Bayesian
method requires the knowledge of all the M MFSK decision variables,
and the associated complexity increases exponentially with M . When
using RS coding, EI can also be achieved by attaching parity-check
bits to each of the RS-coded symbols [5], [7] for checking whether the
symbol was correctly received. However, this type of EI is achieved
at the cost of reducing the overall throughput. Furthermore, similar to
other channel-coded schemes, this type of EI degrades the achievable
performance in the low-SNR region, which is due to the increased
redundancy. This is because the increased redundancy reduces the
transmitted energy per symbol, and as a result, the achievable uncoded
error rate increases, which may therefore exceed the error-correcting
capability of the RS code when the SNR is low. By contrast, the EI
scheme based on ratio threshold test (RTT) [1] is a low-complexity EI
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scheme, which exploits the knowledge of both the maximum and the
second maximum of the M decision variables of the MFSK scheme.
It has been shown [1], [6], [8] that the RTT-assisted EI is capable of
improving the attainable antijamming performance of SFH systems
using RS coding.

In [6], two types of EI schemes have been proposed, which are
based either on the output threshold test (OTT) or on the joint
maximum output–ratio threshold test (MO-RTT). Like the RTT, these
two EI schemes belong to the class of low-complexity EI schemes.
Specifically, the OTT-based EI observes the maximum of the M
decision variables, while the joint MO-RTT-based EI observes both
the maximum and the second maximum of the M decision variables
of the MFSK demodulator. It has been shown in [6] that the OTT-
based EI is resilient against fading, while the joint MO-RTT is robust
against both fading and partial-band noise jamming (PBNJ). Note that
the RTT-assisted EI [1] is capable of mitigating PBNJ, but it is not
particularly resilient against fading.

In this paper, we extend the results of [6] by investigating the
performance of an RS-coded SFH-MFSK system when communicat-
ing over uncorrelated Rayleigh fading channels in the presence of
tone jamming (TJ). In our analysis, we consider the aforementioned
three types of low-complexity EI schemes, which are, respectively,
derived based on the RTT, OTT, or joint MO-RTT. The decision
statistics associated with these EI schemes are analyzed. With the
aid of these decision statistics, a range of analytical expressions are
obtained for the RS codeword error probability and the BER after
EI. From our analysis and performance results, it can be shown that
these EI schemes are capable of significantly improving the error
performance of the SFH-MFSK systems in the presence of TJ.

The remainder of this paper is structured as follows. In Section II,
the system under consideration is described, and the symbol-error
rate of the uncoded SFH-MFSK system is derived. In Section III,
the EI schemes considered are discussed, and the related decision
statistics are investigated, while in Section IV, the numerical results
are presented. Finally, in Section V, we present our conclusions.

II. SYSTEM DESCRIPTION

The system under consideration is similar to that described in [6]
and [8]. In the transmitter, the RS encoder with code rate Rc = K/N
converts each block of K M -ary information symbols into N coded
symbols. We assume that we have N = M − 1 = 2b − 1, where b =
log2 M represents the number of bits per symbol. After MFSK mod-
ulation, the frequency synthesizer, which operates under the control
of a pseudonoise generator, generates a sequence of random-hopping
frequencies, one of which is activated during each hop interval of
duration Th. We assume that one coded symbol is transmitted per
frequency hop, and the bandwidth of one frequency-hopping (FH) tone
is given by that of its main spectral lobe occupying B = 1/Th.

The modulated signal of each FH tone is transmitted over a
frequency-nonselective Rayleigh fading channel. We assume that
fading is independent for each symbol, due to frequency diversity
achieved through FH.

The transmitted signal is assumed to be interfered by a tone-
jamming signal consisting of Q equal-power continuous-wave tones,
each of which has a frequency equal to that of one of the M -ary
signaling tones. We assume that the intentional jammer has explicit
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knowledge of the communication system’s parameters, and thus, it
is capable of adjusting the number of jamming tones accordingly,
keeping the total multitone-jamming (MTJ) power fixed. We consider
the case of n = 1-band MTJ, which is regarded as the worst-case
TJ [9]. In this context, there is, at most, one interfering tone in an
MFSK band, which is defined by the bandwidth occupied by the
M FSK signaling tones. Furthermore, it has been shown that, for
Rayleigh fading, a jammer associated with a jamming duty factor of
unity inflicts the most detrimental interference upon the FH system
[10]. These assumptions imply that we have Q = Nb, where Nb is the
number of MFSK bands in the total spread-spectrum bandwidth given
by Wss = M ×Nb ×B, which is assumed to be fixed. Note that the
probability that a particular MFSK tone is jammed is given by 1/M .
We can define the signal-to-jammer power ratio (SJR) as [9], [11]

SJR =
Eb

PTJ/Wss

=
Eb

PJ

Nb

Q

M

Th

=
Es

Ej

M

b
(1)

where Es = PTh = bEb represents the symbol energy, Eb is the en-
ergy per bit, and P is the power of the transmitted signal. Furthermore,
in (1), PTJ = PJQ represents the total MTJ power, PJ is the power
of a single MTJ tone, and Ej = PJTh represents the energy of a
jamming-tone-per-symbol duration. Finally, we define the MTJ power
spectral density as Nj = PTJ/Wss [9], [11].

In the receiver, the signal is dehopped and then demodulated by a
bank of M square-law detectors. An EI device then observes all the
M square-law detector outputs and either inserts an erasure, if the cor-
responding threshold condition is met (to be discussed in Section III),
or outputs a symbol according to the standard MFSK demodulation
principle. After the RS decoder has received N symbols or erasures
from the EI device, it decodes them and outputs K decoded symbols
with the aid of EED [6], [8]. The uninterfered signal corresponding to
the ith FSK tone fi, i = 1, 2, . . . ,M , at the input of the square-law
detector, can be expressed as

ri(t) = αs

√
2PRc cos{2πfit+ φs} + ni(t) (2)

where αs represents the amplitude attenuation factor due to Rayleigh
fading and φs includes all the phases in the received signal due to FH,
carrier modulation, and MFSK modulation, as well as that induced by
the fading channel. Finally, ni(t) represents the AWGN having zero
mean and double-sided power spectral density of N0/2.

Assuming that the first FSK tone is activated, let us denote the
output of the square-law detector corresponding to the signal tone by
U1 when it is uninterfered and by U1(j) when the frequency of the
interfering tone coincides with that of the signal tone. Similarly, let Ui

and Ui(j) denote the corresponding unjammed and jammed outputs
of the square-law detector corresponding to the ith nonsignal tone.
Assuming independent Rayleigh fading of the desired signal and the
jamming tones, it can be shown that the outputs of the square-law
detectors are given by [9], [12]

U1(j) =

∣∣∣αs

√
RcEse

jφs + αj

√
Eje

jφj + n1

∣∣∣2 (3)

U1 =
∣∣∣αs

√
RcEse

jφs + n1

∣∣∣2 (4)

Ui(j) =
∣∣∣αj

√
Eje

jφj + ni

∣∣∣2 , i = 2, 3, . . . ,M (5)

and

Ui = |ni|2, i = 2, 3, . . . ,M (6)

where αj and φj are the amplitude attenuation factor and the phase as-
sociated with the interference tone, respectively. It is shown in (3)–(5)
that all the square-law detector outputs are central Chi-squared distrib-
uted with double degrees of freedom or exponentially distributed [12].
Thus, it can be shown that the probability density function (pdf) of the
noise-normalized square-law detector output may be expressed as

fU1(j)(y) =
1

1 + γc(j)

exp

[
− y

1 + γc(j)

]
, y ≥ 0 (7)

fU1(y) =
1

1 + γc

exp

[
− y

1 + γc

]
, y ≥ 0 (8)

fUi(j)(y) =
1

1 + γj

exp

[
− y

1 + γj

]
, y ≥ 0, i > 1 (9)

and

fUi
(y) = exp(−y), y ≥ 0, i > 1 (10)

where γc = ΩsRcEs/N0, γj = ΩjEj/N0, and γc(j) = γc + γj .
Moreover, Ωs = E[α2

s] and Ωj = E[α2
j ].

Let H1 represent the hypothesis that the transmitted symbol is
correctly detected, and H0 denote the hypothesis that the transmitted
symbol is incorrectly detected, when using hard decisions. It can be
shown that the probability P (H1) of a correct decision for the uncoded
system is given by

P (H1)=
1

M

∞∫
0

fU1(j)(y)


 y∫

0

fUi
(x)dx




M−1

dy

+
(
M−1

M

) ∞∫
0

fU1(y)

y∫
0

fUi(j)(x)dx


 y∫

0

fUi
(x)dx




M−2

dy

=
1

M

M−1∑
n=0

(−1)n

(
M − 1

n

)
1

1 + n
(
1 + γc(j)

)

+
(
M − 1

M

)M−2∑
n=0

(−1)n

(
M − 2

n

)

×
[

1

1 + n(1 + γc)
− 1+ γj

2 + γc + γj + n(1 + γc)(1 + γj)

]
.

(11)

Thus, the probability of an incorrect hard decision is expressed as
P (H0) = 1 − P (H1).

III. ERROR PROBABILITY OF RS-CODED SYSTEM USING EED

Let us now investigate the achievable performance of the SFH-
MFSK system when EED is considered. We choose three different
EI schemes, each of which may be employed for inserting an erasure
after energy detection on the basis of a certain test condition. Let
Y1 = max[U1, U2, . . . , UM ] and Y2 = max2[U1, U2, . . . , UM ] de-
note the maximum and second maximum of the square-law detector
outputs, respectively. In the context of the OTT, if Y1 ≤ YT is satisfied,
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where YT is a preset threshold, the associated demodulated symbol
should be erased. Otherwise, if we have Y1 > YT , the demodulator
outputs an RS code symbol [6]. By contrast, in the context of the
RTT, a preset threshold λT can be invoked, in order to erase the low-
reliability symbols, whenever we have Y2/Y1 ≥ λT [1], [6]. Finally,
in the context of the joint MO-RTT [6], we assume that YT and λT are
two thresholds, which activate an EI, whenever we have Y1 ≤ YT and
Y2/Y1 ≥ λT .

Next, we determine the expressions for the pdfs of Y1 in the context
of the OTT of λ = Y2/Y1 in the context of the RTT, as well as the
joint pdf of Y1 and λ = Y2/Y1 in the context of the MO-RTT. The pdf
of Y1, conditioned on the correct decision hypothesis of H1, can be
expressed as follows:

fY1(y1|H1)

=
d

dy1

P [Y1 ≤ y1|H1]

=
1

P (H1)

d

dy1

P [Y1 ≤ y1,H1]

=
1

P (H1)

d

dy1[
1

M
P
[
U1(j) = Y1 ≤ y1,

(
Ui ≤ U1(j)

)M
i=2

]
+
(
1 − 1

M

)

× P
[
U1 = Y1 ≤ y1, Ui(j) ≤ U1, (Ui ≤ U1)

M
i=2,i(j) �=i

] ]

=
1

P (H1)

d

dy1


 1

M

y1∫
0

fU1(j)(x)dx


 x∫

0

fUi
(y)dy




M−1

+
(
1 − 1

M

) y1∫
0

fU1(x)dx


 x∫

0

fUi(j)(y)dy




×


 x∫

0

fUi
(y)dy




M−2

 (12)

where P [·] denotes the probability of an event. Upon substituting the
corresponding pdfs from (7)–(10) into the above equation, the pdf of
Y1 can be expressed as

fY1(y1|H1) =
1

P (H1)

1

M

×

[
1

1 + γc(j)

exp

(
−y1

1 + γc(j)

)
× (1 − e−y1)M−1

+ (M−1)
1

1 + γc

exp

(
−y1

1 + γc

)

× (1−e−y1)M−2

[
1−exp

(
−y1

1 + γj

)]]
(13)

where P (H1) is given by (11).When deriving the pdf fY1(y1|H0), we
should consider the fact that, if a nonsignal tone is jammed, the largest
of the square-law detector outputs, i.e., Y1, may correspond to either
the jammed nonsignal tone or to one of the unjammed nonsignal tones.

Hence, we have

fY1(y1|H0) =
d

dy1

P [Y1 ≤ y1|H0]

=
1

P (H0)

d

dy1

P [Y1 ≤ y1,H0]

=
1

P (H0)

d

dy1[
1

M
(M − 1)P

[
Ui = Y1 ≤ y1, U1(j) ≤ Ui,

(Uj ≤ Ui)
M
j=3,j �=i

]
+
(
M − 1

M

)

×

{
(M−2)P

[
Ui = Y1 ≤ y1, U1 ≤ Ui,

Ui(j)≤Ui, (Uj ≤Ui(j))
M
j=4,j �=i

]
+ P
[
Ui(j) = Y1 ≤ y1, U1 ≤ Ui(j)

(
Uj ≤ Ui(j)

)M
j=2,j �=i(j)

]}]

=
1

P (H0)

d

dy1

×


 1

M
(M − 1)

y1∫
0

fUi
(x)dx


 x∫

0

fU1(j)(y)dy




×


 x∫

0

fUi
(y)dy




M−2

+
(
M − 1

M

)

×


(M − 2)

y1∫
0

fUi
(x)dx


 x∫

0

fU1(y)dy




×


 x∫

0

fUi(j)(y)dy




 x∫

0

fUi
(y)dy




M−3

+

y1∫
0

fUi(j)(x)dx


 x∫

0

fU1(y)dy




×


 x∫

0

fUi
(y)dy




M−2




=
1

P (H0)

(
M − 1

M

)

×

[[
1 − exp

(
−y1

1 + γc(j)

)]

×
(
1 − e−y1

)M−2
e−y1 +

[
1 − exp

(
−y1

1 + γc

)]

×

{
(M − 2)e−y1(1 − e−y1)M−3

×
[
1 − exp

(
−y1

1 + γj

)]
+

1

1 + γj

× exp

(
−y1

1 + γj

)
(1−e−y1)M−2

}]
. (14)
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The joint pdf of Y1 and Y2, which is conditioned on the hypothesis
H1, can be expressed as

fY1,Y2(y1, y2|H1)

=
∂2

∂y1∂y2

P [Y1 ≤ y1, Y2 ≤ y2|H1]

=
1

P (H1)

∂2

∂y1∂y2

P [Y1 ≤ y1, Y2 ≤ y2,H1]

=
1

P (H1)

∂2

∂y1∂y2
M − 1

M

y2∫
0

fUi
(x)dx


 y1∫

x

fU1(j)(y)dy




×


 x∫

0

fUi
(y)dy




M−2

+
M − 1

M

×


(M − 2)

y2∫
0

fUi
(x)dx


 y1∫

x

fU1(y)dy




×


 x∫

0

fUi(j)(y)dy




 x∫

0

fUi
(y)dy




M−3

+

y2∫
0

fUi(j)(x)dx


 y1∫

x

fU1(y)dy




×


 x∫

0

fUi
(y)dy




M−2




=
1

P (H1)

(
M − 1

M

)

×


fU1(j)(y1)fUi

(y2)


 y2∫

0

fUi
(y)dy




M−2

+ fU1(y1)

×


(M − 2)

y2∫
0

fUi(j)(y)dy


 y2∫

0

fUi
(y)dy




M−3

× fUi
(y2) + fUi(j)(y2)


 y2∫

0

fUi
(y)dy




M−2


 .

(15)

Now, let Y = Y1 and λ = Y2/Y1. Then, upon using the expressions
for the corresponding pdfs, it can be shown that the joint pdf of
Y and λ, which is the pdf associated with the MO-RTT-based EI

scheme, which is conditioned on the hypothesis H1, can be expressed
as [6], [12]

fY,λ(y, r|H1)

=
(
M − 1

M

)
y

P (H1)

×

[
1

1 + γc(j)

e−yr exp

(
−y

1 + γc(j)

)
(1 − e−yr)M−2

+
1

1 + γc

exp

(
−y

1 + γc

)

×
{

(M − 2)e−yr

[
1 − exp

(
−yr

1 + γj

)]
(1 − e−yr)M−3

+
1

1 + γj

exp

(
−yr

1 + γj

)
(1 − e−yr)M−2

}]
. (16)

The joint pdf of Y1 and Y2, which is conditioned on the hypothesis
H0, can be expressed as

fY1,Y2(y1, y2|H0)

=
∂2

∂y1∂y2

P [Y1 ≤ y1, Y2 ≤ y2|H0]

=
1

P (H0)

∂2

∂y1∂y2

P [Y1 ≤ y1, Y2 ≤ y2,H0]

=
1

P (H0)

∂2

∂y1∂y2
 1

M
(M − 1)




y2∫
0

fU1(j)(x)dx


 y1∫

x

fUi
(y)dy




×


 x∫

0

fUi
(y)dy




M−2

+ (M − 2)

×
y2∫
0

fUi
(x)dx


 y1∫

x

fUi
(y)dy




×


 x∫

0

fU1(j)(y)dy




 x∫

0

fUi
(y)dy




M−3


+
(
M − 1

M

)


y2∫
0

fU1(x)dx




 y1∫

x

fUi(j)(y)dy




×


 x∫

0

fUi
(y)dy




M−2

+ (M − 2)

×


 y1∫

x

fUi
(y)dy




 x∫

0

fUi(j)(y)dy




×


 x∫

0

fUi
(y)dy




M−3

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+ (M − 2)

y2∫
0

fUi
(x)dx

×


 y1∫

x

fUi(j)(y)dy




 x∫

0

fU1(y)dy




×


 x∫

0

fUi
(y)dy




M−3

+ (M − 2)

×
y2∫
0

fUi(j)(x)dx


 y1∫

x

fUi
(y)dy




×


 x∫

0

fU1(y)dy




 x∫

0

fUi
(y)dy




M−3

+ (M− 3)

y2∫
0

fUi
(x)dx


 y1∫

x

fUi
(y)dy




×


 x∫

0

fUi(j)(y)dy




 x∫

0

fU1(y)dy




×


 x∫

0

fUi
(y)dy




M−4


 . (17)

After partial differentiation, the above equation can be written as

fY1,Y2(y1, y2|H0)

=
1

P (H0)

(
M − 1

M

)

×


fU1(j)(y2)fUi
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After changing the variables from Y1 and Y2 to Y and λ = Y2/Y1

[6], [12], [13], we obtain the corresponding joint pdf, which is con-
ditioned on the hypothesis H0, which is given in (19), shown at the
bottom of the page.

fY,λ(y, r|H0) =
(
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M
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1
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3568 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 56, NO. 6, NOVEMBER 2007

Finally, we derive the pdfs corresponding to the ratio λ = Y2/Y1 in
the context of the RTT-assisted EI scheme. These pdfs can be readily
obtained from (16) and (19) by integrating them in terms of Y from
0 to ∞, yielding the expressions given in (20) and (21), shown at the
bottom of the page.

From the pdfs derived above, it is straightforward to express the
probability Pe of erasure and probability Pt of error after erasure for
a chosen threshold corresponding to a certain EI scheme. The required

expressions have been given in [6]. Consequently, the probability of
not decoding the codeword correctly, i.e., the codeword error proba-
bility Pw, can be expressed as [6]

Pw =

N∑
i=0

N−i∑
j=j0(i)

(
N

i

)(
N − i

j

)
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i(Pe)
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N−i−j

(22)
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Fig. 1. Analytical and simulation results for the probability of erasure
corresponding to the RTT plotted against Eb/Nj when the uncoded SFH-
MFSK system is subjected to Rayleigh fading and n = 1-band MTJ and when
assuming λT = 0.4 and Eb/N0 = 16 dB.

where we have j0(i) = max{0, N −K + 1 − 2i}. The symbol-error
rate after EED can be expressed as [14]

Ps ≈ 1

N

N∑
i=0

N−i∑
j=j0(i)

(i+ j)

(
N

i

)(
N − i

j

)

× (Pt)
i(Pe)

j(1 − Pt − Pe)
N−i−j . (23)

The BER of the SFH-MFSK system employing RS EED can be de-
termined from the symbol-error rate given by (23) using the expression
Pb = Ps((M/2)/(M − 1)) [12].

IV. ANALYTICAL RESULTS AND DISCUSSION

Based on the BER derived for the RS-coded system employing one
of the three EI schemes considered, we are now capable of studying
the properties of the system. In Fig. 1, the probability of erasure
corresponding to λT = 0.4 in the context of the RTT has been shown
based on both analytical and simulation results when the SFH-MFSK
system communicates in a Rayleigh fading channel and is interfered
by n = 1-band MTJ. The results shown in Fig. 1 are for M = 2, 4,
and 8 and indicate that our analysis of the probability of erasure is
correct.

In Figs. 2 and 3, we evaluated the codeword error probability against
a range of YT and λT values, respectively, as well as for various values
of M and the corresponding RS codes. We observe that, for each value
of M , an optimum threshold value exists in the context of both the
OTT and the RTT, corresponding to the minimum system codeword
error probability that is achieved. In a similar fashion, it can be shown
that, in the context of the MO-RTT, there exist optimum values of the
thresholds of λT and YT , which result in the best system performance
when employing EED.

We also observe in Figs. 2 and 3 that the system using M = 16
achieves the lowest codeword error probability in both figures. This
observation can be explained as follows. It is well known that the
performance of the MFSK system recorded in the absence of interfer-
ence improves as M increases, which is a benefit of increased symbol
energy [12], whereas the detrimental effects of single TJ imposed on
the performance of FH-MFSK become more severe as M is increased
[9]. Moreover, in the context of the RS-coded system, using a higher
value of M implies that the RS code operates over a larger Galois
field and, hence, potentially becomes capable of correcting more bits

Fig. 2. Codeword error probability versus threshold YT for RS-coded SFH
MFSK using the OTT when subjected to Rayleigh fading and n = 1-band MTJ
at Eb/Nj = 20 dB, Eb/N0 = 16 dB, and various values of M .

Fig. 3. Codeword error probability versus threshold λT for RS-coded SFH
MFSK using the RTT when subjected to Rayleigh fading and n = 1-band MTJ
at Eb/Nj = 20 dB, Eb/N0 = 16 dB, and various values of M .

per symbol, although the number of symbol errors corrected remains
t = (N −K)/2 when the code rate is fixed to K/N [12]. Thus, in
the context of the system under consideration, increasing the value
of M results in conflicting trends. More specifically, a high value of
M results in an increased symbol energy and a potentially higher
error-correcting capability, but it also leads to higher susceptibility
to single-tone interference. These contrasting effects of increasing
the value of M imply that there exists an optimum M value, which
achieves the best error performance. Consequently, we observe that,
corresponding to the system parameters assumed in Figs. 2 and 3, the
system corresponding to M = 16 achieves the best performance when
using RS EED.

In Fig. 4, we evaluated the BER of RS-coded SFH MFSK when
it employs OTT-based EI and when assuming optimum threshold
values for each value of Eb/Nj and M . The results of Fig. 4 show
that EED outperforms the “error-correcting only” decoding for all
values of M . However, the BER improvement of EED portrayed in
Fig. 3 is noteworthy only when the jammer power is sufficiently low.
Furthermore, when the SJR is sufficiently high, i.e., when Eb/Nj

exceeds 20 dB, a higher performance gain can be achieved, particularly
in the case of M = 32, owing to the higher error-correcting capability
of the RS(31,20) code used. Finally, in Fig. 5, we show our BER
performance comparison for the RS-coded SFH-MFSK system when
employing the three different types of EI schemes considered. We
can see that the BERs of the three types of EI schemes are hardly
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Fig. 4. BER versus Eb/Nj performance of RS-coded SFH MFSK using the
OTT-based EI for Eb/N0 = 16 dB when subjected to Rayleigh fading and
n = 1-band MTJ and assuming optimum thresholds.

Fig. 5. Comparison of the BER versus Eb/Nj performance of the RS-coded
SFH-MFSK system using OTT-, RTT-, and MO-RTT-based EI for Eb/N0 =
16 dB when subjected to Rayleigh fading and n = 1-band MTJ and when
assuming optimum thresholds.

distinguishable from each other when Eb/Nj is relatively low, i.e.,
when Eb/Nj ≤ 20 dB. By contrast, when Eb/Nj is sufficiently high,
i.e., when Eb/Nj ≥ 25 dB, both the OTT and the MO-RTT outper-
form the RTT. It can be inferred from the definition of the EI schemes
outlined in Section III that the OTT-based scheme provides a technique
for erasing symbols that suffer from strong fading while the RTT-
based method seeks to eliminate symbols that are rendered unreliable
owing to interference. Consequently, when the jamming power is low,
most errors occur due to Rayleigh fading, and the OTT-based EI
outperforms the RTT-based scheme, as shown in Fig. 5. Finally, the
MO-RTT-based EI performs slightly better than both the OTT- and
RTT-based EI, since it makes use of the combined information based
on the OTT and the RTT. However, for the system under consideration,
the BER performance of the MO-RTT is close to that of the OTT. In
order to show the slight differences in detail, the minimum achievable
BER values of SFH 16-ary FSK have been summarized in Table I when
invoking the RTT-, the OTT-, and the MO-RTT-based EI schemes. It
is noteworthy from the results shown in Table I that, when Eb/Nj

is relatively low, i.e., 15 or 20 dB, and Eb/N0 is high, i.e., 20 or
25 dB, the RTT outperforms the OTT. For all other values of Eb/Nj

and Eb/N0 shown in Table I, the OTT performs better than the RTT-
based EI scheme. This observation implies that, when the thermal
noise power is high, the OTT-based scheme is more effective than the
RTT-based scheme.

TABLE I
COMPARISON OF BER ACHIEVED BY RS-CODED SFH 16-ARY FSK

USING VARIOUS EI SCHEMES, WHEN SUBJECTED TO

RAYLEIGH FADING AND n = 1-BAND MTJ

V. CONCLUSION

In this contribution, we have analyzed the BER performance of
the RS-coded SFH-MFSK system using EI when the SFH-MFSK
signals are transmitted over Rayleigh fading channels in the presence
of n = 1-band MTJ. We found that, with the aid of RS EED assisted
by one of the three EI schemes considered in this contribution, the
system performance may be significantly improved, provided that the
jamming power is not excessively high. It was demonstrated that, when
the jamming power is low, the OTT outperforms the RTT. Since the
MO-RTT is constituted by an amalgam of the OTT- and RTT-based EI
schemes, it either outperforms both the OTT and the RTT or results
in a performance which matches the better of the other two. However,
the corresponding performance is typically close to that of one of its
counterparts. The results also showed that, in general, when the SFH-
MFSK system experiences TJ, there is an optimum value of M , which
results in the best performance.
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Abstract—This paper derives general exact expressions for the level
crossing rate (LCR) and the average fade duration (AFD) of dual-branch
selection, equal-gain, and maximal-ratio combiners operating over non-
identical correlated Weibull fading channels. Sample numerical results
are discussed by specializing the general expressions to a space-diversity
system using horizontally spaced antennas at a mobile station. It is verified
that as the antenna spacing becomes larger, the LCR decreases, becoming
oscillatory and convergent. In addition, when the direction of the mobile is
perpendicular to the axis of the antenna, the AFD is loosely dependent on
the antenna spacing. Some simulation results are presented to verify the
correctness of the analytical formulation.

Index Terms—Average fade duration (AFD), diversity-combining
techniques, level crossing rate (LCR), Weibull fading channels.

I. INTRODUCTION

Diversity-combining techniques constitute an effective means to
combat the deleterious effects of multipath fading on the performance
of wireless communication systems. This performance can be eval-
uated by several measures, including the level crossing rate (LCR)
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and the average fade duration (AFD). Although the branch signals
may be correlated and nonidentically distributed in practical systems
[1]–[6], the literature on the LCR and AFD of diversity techniques
over nonidentical correlated fading is not as rich as for the inde-
pendent scenario. Pioneering work on this issue was carried out by
Adachi et al. [1] for dual-branch selection combining (SC), equal-
gain combining (EGC), and maximal-ratio combining (MRC) over
balanced correlated Rayleigh channels. The unbalanced correlated
Rayleigh and Ricean cases were addressed in [2] and [3] for MRC.
In [4], Yang et al. presented a unified treatment for LCR and AFD
of M -branch SC over unbalanced correlated Rayleigh, Ricean, and
Nakagami-m channels. In [5], the LCR and AFD for the MRC
were derived for a correlated unbalanced Nakagami-m environment.
More recently, an extension of [1] for unbalanced channels was
investigated in [6]. To the best of the authors’ knowledge, these
second-order statistics for correlated nonidentical Weibull fading chan-
nels have not been investigated in the literature yet. This paper derives
general exact expressions for the LCR and AFD for dual-branch SC,
EGC, and MRC combining systems in a Weibull fading environment.
The expressions apply to nonidentical correlated diversity channels.
Some numerical results are presented for a space-diversity system
using horizontally spaced antennas at a mobile station. To verify the
correctness of the analytical formulation, simulation data are also
provided.

This paper is organized as follows: Section II establishes the
model for the Weibull fading channels and derives the Weibull joint
bidimensional envelope-phase density (JBEPD). Some key statistics
involving the branch envelopes and their time derivatives are derived in
Section III. Relying upon these statistics, general exact LCR and AFD
expressions are also presented. Section IV computes the conditional
means and variances for each diversity system. Section V shows some
numerical and simulation plots, and Section VI draws some conclu-
sions. Appendix A details the formulation of the complex covariance
matrix. Appendix B demonstrates the relation between the conditional
statistics (means, variances, and covariance) of the real variates with
those of the complex variates.

II. PRELIMINARIES

The Weibull distribution is an empirical distribution, which was first
proposed aiming at applications in reliability engineering. It has also
found use in wireless communications to model the fading envelope
[7]–[9]. In [10] and [11], a very simple physical model for the Weibull
distribution was proposed. In essence, in the proposed model, the
received signal Zi at branch i (i = 1, 2) can be represented in a
complex form as

Zi = R
αi/2
i exp(jΘi) = Xi + jYi (1)

where
√
j = −1; Ri is the Weibull envelope; Θi is the Weibull phase,

which is uniformly distributed in [0, 2π); Xi and Yi are independent
zero-mean Gaussian variates with identical variances σ2

i ; and αi > 0
stands for the Weibull fading parameter. The probability density
function (pdf) fRi

(·) of the envelope Ri is given by

fRi
(ri) =

αir
αi−1
i

Ωi

exp

(
−rαi

i

Ωi

)
(2)

where Ωi = E(Rαi
i ) = 2σ2

i , and E(·) stands for the statistical av-
erage. For the special cases αi = 1 and αi = 2, (2) reduces to the
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