I. Introduction
Electromagnetic (EM) simulation is accurate, but CPU intensive; hence, using a full-wave EM simulator to optimize a complex structure may be prohibitive. An approach is to use decomposition, i.e., to break down an EM-based model and combine the components within a circuit simulator in the hope of reducing CPU demand. Co-simulation or co-optimization of EM/circuits [1]–[7] is a common industry solution to blend EM-simulated components into circuit models. These methods embed parameterized EM or interpolated EM components in a circuit simulator to form a surrogate for optimization. Swanson et al. [8], [9] and Rautio [10] propose a “simulator-based” tuning method in which circuit-theory-based tunable elements are embedded in an EM simulator through internal ports created in the EM model. The resulting surrogate can be optimized.