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Abstract-New sufficiency conditions are given for the multipli-
cative form of value function, the use of which alleviates a good bit
of the effort for verification, using existing procedures, of an additive
value function form. These conditions result in increased sensitivity
of the scoring form for many applications. These are possible since
the new results are weaker sufficient conditions than mutual preferen-
tial independence of attributes, the existing sufficiency condition for
the multiplicative form of value function. An example illustrating
use of the new sufficiency conditions for an aircraft retrofit problem
is presented, as is a concise summary of a suggested assessment
procedure.

I. INNTRODUCTION
Mutual preferential independence of attributes is generally used

as a sufficiency condition for the multiplicative form of value
function. Often the effort to verify existence of this condition is
considerable. In this correspondence new and weakened
sufficiency conditions are given for the multiplicative form of
value function. Use of these new conditions will generally require
much less effort than use of the mutual preferential independence
conditions. Also the new sufficiency conditions will often present
very desirable measurement sensitivity conditions.

Section II discusses the motivation for use of multiplicative
form of value function. Section III presents and proves the exist-
ence of weaker conditions which allow use of the multiplicative
function while alleviating much of the verification process.
Finally, section IV presents a numerical application which con-
cerns aircraft retrofit requirements.

II. THE ADDITIVE VALUE FUNCTION
The popularity of the additive form of measurable value func-

tions is warranted because of the facility of assessment of the
constituent value functions and ease of evaluation of the scaling
constants [1] and [6]. Unfortunately, two drawbacks should, in
practice, often discourage the widescale use of the additive form of
value function. The additive form of value function is

n
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it=

where v(x) is a scalar signifying the score for a specific action with
attribute levels xi, vi(xi) is a component value statement for attri-
bute level xi, x is an n vector of attribute levels, and ki is a scaling
constant. It is proper to use this additive form only when the
attributes xi are mutually preferentially independent (MPI) [6],
and this can be difficult for the gerent to verify. It is a sizable task
to show MPI of attributes where the dimension of the value
attributes n is large.
Another shortcoming of the additive form is that it tends to be

insensitive to individual attribute levels. Additive forms are com-
pensatory in the sense that an increase in one attribute can com-
pensate for a decrease in any other attribute. This means that
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large increases or decreases in any one attribute may be offset by
changes in other attribute levels and consequently may have little
effect on the scoring value of the total model. Huber and Johnson
[3] have pointed out that this compensatory characteristic may be
undesirable in many applications.

III. THE Mt I TIPLICATIVE VALUE FUNCTION
A form of value function that alleviates these difficulties is the

multiplicative form. While the requirement for MPI of attributes
is a sufficient condition for a multiplicative form of value functioln,
it is not a necessary condition as it was for the additive form. Dycl-
and Sarin [1], building on the work of Fishburn [2] and Keeney
and Raiffa [6], have determined a sufficient condition for the
multiplicative form of the general multilinear form. If attributes
X1, X 2, .. XA are mutually weak difference indepenident
(MWDI). then the form of the salue function is

r(x) = S kvIx kik)
i =t
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or

n
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To continue the development, it is desirable to define weak
difference independence (WDI).'

Definition: Attribute Xi is WDI of X if given aivy -ai hb.i
die Xi, such that

v(ai, a,) -(bi. a,) 2 i'(, a-,) -t(d,a)
for some a-, c- Xl, then it is required that

v^(ai b-t-) -- t,,(bi h-) :_> r(ci,) - tr(djb,)
for any b, t X-i.

Thus, WDI means that the ordering of preference differences
depends only on the value differences associated with attribute Ai
and not on the fixed value of all other attributes of X,. The attrib-
ute Xi is WDI of X-, if the value function is of the form

(4)
for all Xi, X,, and X,, where g(X--) and h(X-3)> 0 are functions
which depend only on XAJ.
A physical interpretation of this definition of WDI will now be

presented for an equipment retrofit design effort. It is assumed
that only two attributes are important to the problem. XI which
represents volume and X2 = X, which represents cost. The object
is to minimize the cost and the volume of the retrofit equipmenlt.
To check if XA' is WDI of XT, we first choose levels of a1.,b -1,
dI c Xl and a1 EC X1, so that the exchange of the combination of
attributive levels (bl, a1) for the pair (a1, a) is preferred to the
exchange of pair (di, a1) for (c , a1). If this preference order is

The symbol Y, is used to indicate all components of Y not coultained iM 1S
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preserved for other levels of attribute XT, that is to say if the
exchange of (b1, bT) for the combination (a,, bT) is preferred to the
exchange of pair (d1, bT) for (cl, bT) for any bT E XT, then X1 is
WDI of XT. In this case let

a5=4rm3, b1=5m3, c1=2m3, d =3m3,
and aT = $106, and assume that 4 m3 equipment volume fills the
allotted space and that 5 m3 of equipment means a cutback of a
co-located equipment function. To satisfy the above requirement
at a single attribute level, the decisionmaker (DM) must prefer the
exchange of a system with characteristics of (5 m3, $106) for a
configuration (4 m4, $106) over the exchange of a configuration (3
mi3, $106)for a configuration (2 m3, $106). WDI requires that this
preference order for exchanges must apply for other levels of XT
such as bT = $1.5 x 10' in each system configuration. Thus the
DM must still prefer the exchange of system (5 m3, $1.5 x 106) for
system (4 m3, $1.5 x 106) over the exchange of system (3 m3,
$1.5 x 106) for system (2 m3, $1.5 x 106). If the DM expresses the
same preference order responses for a number of different quad-
ruples of levels X1 and fixed levels of X1, then it can be deduced
that X1 is WDI of XT. A caveat should be issued in order to insure
that the DM is stating preferences concerning exchanges of
configurations and outcomes and not stating preference for the
configurations or outcomes themselves. For instance a rational
DM who prefers an exchange of the pair ($100, 1 oz of gold) for
($105, 1 oz of gold) to an exchange of the attribute pair ($40, 1 oz
of gold) for ($50, 1 oz of gold) is obviously not concentrating on
the exchange itself (if it is assumed that the DM has a linearly
increasing monetary value preference curve) because this DM is
irrationally preferring an increase in cash of $5 to an increase of
$10. A DM who incorrectly stated this would be erroneously
establishing the first condition for WDI at the single attribute
level. This exchange preference idea agrees with Kahneman and
Tversky [4] in their "prospect theory" which accounts for the
reference effect of the asset position of the DM in rational choices.
The verification of the appropriateness of the multiplicative

form of value function requires checking all subsets of attributes of
WDI. We present the following to make this task simpler and less
time-consuming.

Theorem 1: Given attributes X1, X2, X,, the following are
equivalent.

a) Attributes X1, X2, , Xn are mutually weak difference
independent (MWDI).

b) Xi is weak difference independent of X,-, and (Xi, Xj), j # i
is preferentially independent (PI); j = 1, 2, 3, , n, n > 3.

The result of this theorem allows a much reduced effort in order to
verify sufficient conditions for the validity of a product form of
measurable value function. The proof of this theorem requires a
fundamental relationship between PI and WDI. This relationship
follows the same reasoning presented in Keeney [5] and Keeney
and Raiffa [6] for weak sufficiency associated with mutual utility
independence.
Our proof is simplified by consideration first of the three attri-

bute cases described by Lemma 1.
Lemma 1: Given a set of attributes A, B, and C; if A is weak

difference independent of A, and if (A, B) is preferentially indepen-
dent of (A, B), then (A, B) is WDI of (A, B).
The proof of this Lemma proceeds as follows. We let

A = B 0 C where 0 signifies a Cartesian product space. The case
where (A, B) is WDI of (A, B) for all pairs of attributes is a
sufficient condition for the proof of Theorem 1 in the three attri-
bute cases, and this can be extended to the n attribute case, for

B a

*
b

b4
b3

b0 1< A attribute
a0 a

L. = isopreference curve i
Ei = trade-off area i

Fig. 1. Conceptual illustration of requirements for difference independence,

mutual weak difference independence (MWDI) [1]. The condition
where A is WDI of A can be represented by

v(a, b, c) = g(ao, b, c) + h(a°, b, c)v(a, bo, co), h > 0

(5)
where a, b, and c represent levels of attributes A, B, and C, respec-
tively. We assume that the function g( ) is also a measurable value
function with the same mapping as v( ). Therefore, for simplicity,
we replace g(a, b, c) by v(a, b, c). The function h(. ) is defined as a
positive value function similar to v(.). Since (A, B) is PI of C, we
know that

u(a°, bo, co) > v(a', b', cO)
implies

v(a°, b°, c') > v(al, bl, c'), for all c c C. (6)
Proof of the above lemma requires one to ascertain that (A, B) is
WDI of C.

Constructs motivating our proof can be illustrated graphically
as in Fig. 1. Here a and b are scalar attributes. It is first shown that
the condition of (A, B) being WDI of C holds for all c and (a, b)
pairs in E1. Then because a horizontal line b = b' intercepts indif-
ference line L, and regions El and E2, this allows the WDI condi-
tion to hold for all pairs (a, bl). Now other (a, b) pairs in E2 are
indifferent to the pair (a, b1). This extends the WDI concept to
region E2. This same procedure is repeated over and over again
until all of the attribute space is covered. Then it is shown that all
pairs (a, b) E (A, B) are WDI of c c C and use of the multiplicative
form of value function given by (2) or (3) is justified.
Formal proof of Lemma 1 is now a relatively simple matter. A

pair (a, b) in E1 is defined by

E= {(a, b, c°): v(a, b, c0) < v(a0, bo, c°)},
we assume there exists an a' such that

v(a, b, C0)= v(a', b°, c°), for all (a, b) E El.

Now from (6) and (7), it follows that

(7)

(8)

v(a, b, c) = v(a', bo, c), for all c E C, (a, b) e E,. (9)
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Substituting (9) into (5) results in

v(a, b, c) = v(a°, b°, c) + h(a°, b°, c)v(a', bo, co),
for all c E C, (a, b) E E1. (10)

We now combine (8) and (10) to eliminate v(a', bo, c0) and this
yields the desired result

v(a, b, c) = v(a°, bo, c) + h(a°, bo, c)v(a, b, c°),
for all c c C, (a, b) E El. (11)

As (11) shows, the WDI condition is shown for (A, B) worth
independent of C in the region El. To extend this for all possible
(a, b) pairs in space A 0 B, we shall next move into space E2.
There, we choose b' such that

v(a0, b0o c°) < v(a°, b', c°) < v(a*, b°, co) (12)

Since (a°, b') E El, we may replace a by ao and b by b1 in (11) to
obtain

v(a°, b1, c) - v(a0, bo, c) + h(a°, bo, c)v(a0, b1, c0),

for all c E C. (13)

We rewrite (5) using the levels b' and c° levels as

v(a, b', co) = v(a0, b', co) + h(a0, b1, co)v(a, b0, c0),
for all a E A. (14)

Now we set b = b' in (11) to obtain

v(a, b', c) = v(a0, bo, c) + h(a0, b0, c)v(a, bl, co),
for all (a, b') E El. (15)

This result can now be combined with (14) to yield

v(a, b1, c) = v(a0, bo, c) + h(a0, bo, c)[v(a0, bl, co)

+ h(a0, b1, co)v(a, bo, co)]
= V(a0, b1, c) + h(a0, bo, c)h(a0, b', co)v(a, bo° co),

for all c E C, (a, bl) E El. (16)

We now use the inequality of (12) to define and restrict bt. There
exists an a with v(a, bo, co) > v(a°, b°, c°) which satisfies (16). We
compare (16) to (5) with b = bh and this shows that

h(a0, b', c) = h(a°, bo, c)h(a°. bl, c0), for all c e C.

(17)

Substituting (13) and (17) into (5) with b = bl results in

v(a, bt, c) = v(a', b', c) + h(a', b', c)v(a, bo, co) = v(a0, b0, c)
= v(aW, bo, c) + hl(a0, b0, c)[v(a°, blc0)

+ h(a0, b', co)v(a, bo, co)].
(18)

Now we combine (18) and (14) to obtain

v(a, b', c) -= (a0, bo, c) + h(a0, b0, c)v(a, b', co). (19)

Region E2 is defined by

E2 (a, b, co): v(a*, bo. co) < v(a. b, co) < v(a*, b', c0)}.
(20)

For any (a, b) e E2, there exists an a' such that

v(a, b, c) =vu(a2, b1, c0), for all c c C, (a, b) E E2, (21)

consequently from (6), it follows that

u(a, b, c) = u(a2, bh, c), (a, b) e E2. (22)

Now we evaluate the right side of (22) using (19) to obtain

v(a, b, c) = v(a', b°, c) + h(a0, b°, c)v(a2, b' co), for all c E C

(23)

when combined with (21) the foregoing yields

v(a, b, c) = v(a°, bo, c) + h(a°, bo, c)v(a, b, co). (a, h) c E2.

(24)

This shows the desired result that (A, B) is WDI for regions El
and E2. This same process can be and is repeated until the entire
attribute space is covered. Additional isopreference lines may
need to be inserted to allow overlap of the indifference regions for
given attribute levels of the attribute space. This is shown by
interaction of L'4, b', and b4' in Fig. 1. The continuity assumption
on the measurable value function v, and the nonsatiation assump-
tion that more is better than less of a desired attribute; or that less
is better than more of an undesired attribute, and the assumption
that h(a, b, c) is positive allows one to show that (A, B) is WDI
of C.
The preceding weakened conditions for establishment of

MWDI (and resulting verification of the multiplicative form of
value function) ameliorate drawbacks associated with verifying
the additive form of value function. Fig. 2 illustrates an assessment
procedure to establish MWDI of the attributes. This lessens the
time commitment required of the DM and analyst. Also it pro-
vides a less compensatory scoring form, because of the product
terms that allows for more sensitivity to the attributes. This is
essential in certain applications.

IV. NUMERICAL EXAMPLE

In the application of the approach suggested here to an elec-
tronic warfare equipment selection situation, a proposed measur-
able value function, which can serve as a criterion for a
multiobjective optimization approach, can take the form

1'(X) =f(X 1, -X2, X n) (25)

where the system effectiveness attribute vector takes the product
form

t(X1)= vl(Xl) = k1XIa + k2Xlbl kl2XlaXlb (26)

where X14 is the number of threats covered by alternatives and
X lb is the degree of effectiveness produced by alternatives. Assum-
ing that MWDI has been established for the two attributes, the
product form above reflects the required sensitivity to alternatives
with either an excess or lack of either attribute. Past use of addi-
tive value criteria in the electronic warfare area have not been
sufficiently able to penalize inferior alternatives. This has led to
unjustified confidence in the capability of operating systems as has
been pointed out by Peterson, Hays, and O'Connor [7].
To illustrate this we consider two alternatives A and B with the

following pertinent characteristics

alternative A:

*8 out of 10 critical threats are affected by the system (score
8110 = 0.8),
*3 out of 10 of the critical threats are covered sufficiently to
assume them countered (score 3/10 = 0.3):
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Fig. 2. MWDI assessment procedure.

alternative B:
*6 out of 10 critical threats are affected by the system (score
6/10 = 0.6),
*5 out of 10 critical threats are sufficiently countered (score
5,/10 = 0.5).

Let an additive value function, assuming MPI is also estab-
lished, of the form

vlu(X1) =kiiXia + k22Xlb (27)
be used as a comparison with the multiplicative form of (26).
Assume the scaling constants have been assessed to be
kll= k22 = 0.5 and k, = k2 = k12 = 0.333 so that v1 and vil are
normalized to equal 1.0 when both Xia and Xlb are at their
maximum value of 1.0 and vI = v = 0.0 when both Xia and Xlb
are at their minimum value of 0.0. Now inserting the values above
(for alternative A; X1a= 0.8, Xlb = 0.3 and for alternative B;
X,= 0.6, Xb =0-.5), the following results are obtained:

alternative A: v11 = 0.55 and v1 = 0.45
alternative B: t?1 I = 0.55 and v1 = 0.47.

The results show that the additive form of v1 1 evaluate both alter-
natives identically where as the multiplicative form of v1 differen-
tiates in favor of alternative B. As a matter of interest, all of the
DM's polled, preferred alternative B which indicates that there is
a strong basis for pursuing the multiplicative criteria form in cer-
tain application efforts where sensitivity is paramount.

V. SUMMARY
Alternative sufficient conditions which can be used to verify

MWDI of attributes for the valid use of the multiplicative form of

value function have been obtained. These conditions allow for
reduced efforts in this verification process which is of value to
decisionmakers and analysts. A summary of a recommended
assessment procedure has been presented. The increased sensi-
tivity of the product form of value function makes this form parti-
cularly useful in certain applications as is evidenced by the
numerical example.
The investigation of other implications of the product form to a

DM, such as time, information requirements and alternate deci-
sion situation models, are interesting topics for current
investigation.
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