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ments such as N, DN, E, and EN a large amount in the same
direction. Thus B is an interesting impairment, appearing to affect
the dimensional position of impairments added before it more
than it does the original picture.

Although we have not yet investigated this point exper-
imentally, it appears likely from the above observations that the
dimensional character of any impairment combination will be
affected by the order in which the impairments are introduced.
Impairments which are physically independent in nature appear
to interact when introduced into the same television picture.

CONCLUSIONS
Multidimensional scaling analysis indicated that observers par-

ticipating in our experiments used four dimensions in their char-
acterization of the impairments. We interpreted the dimensions as
1) overall picture clarity, 2) a distinction between overlay impair-
ment and object impairment, 3) the amount of purely spatial or
stationary overlay patterning, and 4) the amount of spatiotem-
poral or moving overlay patterning. Our knowledge of whether
these dimensions are used more generally by observers when judg-
ing impaired television pictures must await further experimenta-
tion with a wider selection of impairments than we ourselves
employed.

Something of the individual character and interaction of the
four basic impairments was revealed by the analysis. The primary
effect of echo and noise was to provide an overlay pattern on the
picture, stationary in the case of echo and moving or scintillating
in the case of noise. The character of the differential quantizing
noise was more complex, having components along three dimen-
sions, those of overall clarity, moving overlay patterning, and
object-overlay distortion. The character of the band-limitation
impairment appeared to be that of a modifier of the character of
previous impairments, its effect when introduced singly being
mainly along the clarity dimension, with a smaller component
along the object-overlay dimension. The interaction between the
four impairments was complex but interpretable.
The study points to a possible binary classification of television

impairments depending on whether they distort objects in a pic-
ture or whether they mask these objects by means of an overlay
pattern. A further subdivision of masking impairments into
moving and stationary types is suggested.

Certain fundamental factors or dimensions appear to be emerg-
ing from the application of multidimensional scaling to acoustical
and visual communication systems. Judgments of similarity and
preference/quality on both analog and digital impairments in-
troduced singly and multiply in both sensory modalities appear to
yield comparable results.
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Failure Prediction for an On-Line Maintenance
System in a Poisson Shock Environment

K. S. LU AND R. SAEKS, FELLOW, IEEE

Abstract A failure prediction algorithm for application in a

periodic on-line maintenance system operating in a Poisson shock
environment is described. The system under test is measured at
periodic maintenance intervals with the data derived therefrom being
used to estimate system lifetime and determine an optimal replace-
ment time. The resultant algorithm is simulated and compared with
various fixed replacement schedules.

I. INTRODUCTION

Although considerable effort has been expended during the past
decade to develop techniques for fault detection and diagnosis in
both analog and digital electronic circuits [10], little attention has
been given to the possibility of formulating algorithms for fault
prediction. To accurately predict a fault, a device must be tested at

periodic maintenance intervals. If the device fails or does not
operate correctly, it is replaced immediately. The device may be
assumed good if its characteristics are in tolerance. However, if
the characteristics are slightly off nominal but the device still
operates correctly, one can attempt to predict if the device will fail
before the next scheduled maintenance interval. If device failure is
predicted, it can be replaced before failure occurs as part of
planned preventative maintenance.
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With the advent of the low-cost microprocessor, on-line fault
prediction is possible and practical [9]. For this purpose, a curve
fitting algorithm for on-line fault prediction was first introduced
by Saeks, Liberty, and Tung [11]-[13] in 1975. The disadvantage
of this algorithm, however, is that the second-order polynomial
model employed is too simple to describe the aging curve of a
real-world component. Employing the Poisson-shock model for
the wear process introduced by Esary, Marshall, and Proschan
[1], [2], [6], another curve fitting fault prediction algorithm which
overcomes these disadvantages is discussed in the present paper
[9].

In the following section a model for the failure dynamics of a
system component parameter is formulated. Here it is assumed
that the failure is due to the component being subjected to a
sequence of Poisson distributed shocks [3], [7], with the measur-
able parameter being controlled by an unknown difference equa-
tion whose underlying discrete "component time" process is
defined by the number of shocks to which the component has
been subjected. Since both the failure dynamics (i.e., the difference
equation) and the relationship between "component time" and
real time are unknown, our failure model is doubly stochastic. The
third section of the paper is devoted to the formulation of an
algorithm for estimating the component failure dynamics, and its
"lifetime" is defined to be the number of shocks required to cause
component failure. This is followed by the formulation of an
"optimal" replacement theory wherein the optimal real time at
which to replace a component is computed in terms of its
estimated "lifetime." Finally, the results of a simulation of the
algorithm in both an ideal and noisy environment are presented
and compared with the simulated performance for several fixed
replacement schedules.

II. FAILURE DYNAMICS

Let C(N) represent values of a particular component
parameter, where the "component time" N denotes the number of
shocks the component has received. It is assumed that the drifting
parameters can be described by a first-order' difference equation
of the form:

C(N+ 1)= C(N)-ao-a1N-a2N' -ahN

reliability theory [1], we assume that this relationship is deter-
mined by a Poisson process. Indeed, this is the unique point
process which has the scaling properties required for such an
application [3]. Here the probability of N shocks occurring in the
time interval t is

PN(t)= e- kt (kt)N N= 0 1 2PN(t)=e N! (3

where k is a given constant representing the average number of
shocks per unit lime. Therefore, (kt) is the average number of
shocks in the time interval t.

III. ESTIMATION OF FAILURE DYNAMICS
AND LIFETIME

In a periodic maintenance system, the performance of a com-
ponent is measured at each maintenance interval nT. That is to
say, (Cl, C2, Cg) is the performance data taken at mainten-
ance times (T, 2T, , gT). The estimation problem can be stated
as, "Given performance data (Cl, C2, , Cg), T and k, estimate
the unknown constants (ao, a,, ah) of the failure dynamics."
Since it is assumed that the system is subjected to Poisson shock
with constant k, the expected number of shocks in each mainten-
ance interval is kT.2 As such, if we assume that Cm is the value of
the component parameter at N = mkT, then upon substituting
Cm = C(mkT) in (2), we obtain

mkT- I mkT-1 mkT- 1

E a,,j+ E alj'+---+ E ahj=l
j=O j=O j=O

where m = 1, 2, 3, , g, or in the matrix form:

JA -

kT- 1
v jo

j=O

kT-1
I jl

j =O0

2kT-1 2kT-1
E jO E jl
j=O j=O

gkT-1

E joj=O

gkT-1
i jl

j=O

kT- 1
... i jh

j=O

2kT-1

j=O

gkT-1
... EO j

j=0

aO I
haI a,

Cm

1 -CI

1 - C2

1 - Cg

A Z.

C(O)= 1. (1)

Here the coefficients and order of the "forcing polynomial" are
assumed to be unknown and must be estimated as part of the fault
prediction process. A little algebra together with the standard
recursive formula for solving a difference equation will reveal that

N-1 h

C(N)= I1- E E ai j'
j=o i=o

Now, if the tolerance limit for the component parameter is
normalized to C = 0, we may define the lifetime of the component
to be the smallest integer N for which C(N) < 0. This integer,
which we denote by L, then represents the number of shocks
necessary to cause the component to fail.

Since the failure model of (1) is dependent on "component
time," i.e., the number of shocks the component has received,
rather than real time, it remains to define the relationship between
"component time" and real time. Following common practice in

' The concepts described herein carry over without modification to the case where
the failure model is characterized by higher order difference equations. The first-
order model, however, suffices to illustrate the theory and is hence used throughout
the present paper.

(2)

(4)
Since the number of data points g is typically much greater than

the order of the polynomial assumed in the failure model h, it is
not expected that (4) admits an exact solution. Rather, we attempt
to solve for a coefficient vector A which minimizes the error be-
tween JA and Z. In particular, if one adopts a least squares error
criterion, the optimal A is given by

AO = j-GZ (5)
where J-G denotes the generalized inverse of J [8]. Indeed, if as is
typically the case, J has full column rank, then j-G = (JtJ)- lJt
where t denotes matrix transposition. As such, we take A' =
col (ao, ao, ao) as our estimate of the coefficients of the
difference equation characterizing the failure dynamics of our
drifting parameter C as per (1).
To estimate the failure dynamics of a drifting parameter, the

proper choice of the order h is, in general, quite difficult and
depends upon physical considerations and engineering exper-
ience. Once h is preselected, however, coefficients to best approxi-
mate the failure dynamics can be readily computed via (5). The

2 Although not theoretically necessary, we assume that kT is an integer.
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accuracy of the resultant estimate, however, is highly dependent
on the choice of the order h and on the number of measurements
which are taken g. To find a new set of coefficients for a different
combination of h and g, the entire calculation procedure is
typically repeated from the very beginning, a process which is
impractical in the on-line maintenance system. Fortunately, se-
quential refinement schemes for obtaining new sets of coefficients
without repeating the entire calculation can be developed [5], [8].
As such, it is possible to sequentially update one's estimates of the
parameters ao, a1, , ah as additional measurements are taken
and/or to increase the order of the model for the failure dynamics
without repetitious matrix inversion. Our algorithm for estima-
tion of the failure dynamics underlying the measured data may
thus be readily implemented on-line with the computational
power presently available in today's microprocessors. The matrix
algebraic details of the required sequential refinement schemes are
straightforward [5], [8] and readily available in the literature. As
such, they will not be repeated here.

In practice, given g measurements C1, C2, , CR taken at main-
tenance intervals T, 2 T, 3 T, , g T, one sequentially estimates the
coefficients of the failure dynamics a0, a1, , ah, increasing h until
no further error reduction is achieved. The resultant set of
coefficients is then used in (2) to determine the component lifetime
L. Upon solving the equation, the resultant estimated lifetime is
found to be the smallest integer L, such that

L-1 h

E E aij >1.
j=O i-O

(6)

Of course, if the measured data is not decaying towards zero, i.e.,
the component is not failing, this inequality will have no solution,
in which case we take L to be infinite [4].

IV. REPLACEMENT THEORY

Although the algorithm outlined in the preceeding section
yields an "optimal" estimate of the number of shocks required to
cause failure, the time at which the Lth shock takes place is statist-
ical in nature, and hence, it still remains to determine the optimal
(in an appropriate sense) time at which to replace the component.
One such criterion is formulated in the following. For this
purpose, it is assumed that L has been computed to our satisfac-
tion and we desire to choose a time T1 at which to replace the
component as a function of L. Given L and T7 we denote the
resultant probability of on-line failure (i.e., failure before T,) by
Pf. Pr = 1 - Pf then denotes the probability that the component
is replaced at time TF before it fails. Similarly, we let Tfdenote the
expected time to failure for those components which fail on-line,
we let T denote the expected time to failure for all components,
and we let T* denote the expected time to failure for the compon-
ents if they were operated to failure without replacement (i.e.,
T* = T IT,,,). Finally, we let fL(t) denote the probability density
function that the component receives the Lth shock at time t,
given that the component fails on-line, whereas pi(t) represents the
density function of the Poisson distribution with parameter (k),
and EL(t) represents the corresponding distribution function; i.e.,

-(kt) -kt..Mt) e , i = 0, 1, 2, (7)

Li-
EL(t)= E pi(t). (8)

i=o

With the aid of some elementary calculus [9], Pf, Pr, Tf, and T,
as well as their derivatives with respect to T, can be computed
analytically. As such, upon defining an appropriate cost measure,

an explicit formula for determining an "optimal" T' (given L) can
be derived. We begin with the derivation of the explicit formula
for the various quantities involved in our replacement theory.

Since a component will be replaced by our algorithm if and
only if it is still operating at time T,, i.e., if it has not yet received L
shocks at time T, the probability of replacement is just the prob-
ability of receiving less than L shocks by time T,. We thus have the
following.

Property 1:

Pr = EL(Tr).
Proof:

Pr = E (k) e- kT - E Pi(Tr) = EL(Tr).
i=o i0i=O

Property 2:

Pf = 1 - EL(Tr).
Property 3:

T.rT
pPi(t) dt = (l/k){1- Ei + 1 (Tr)}.

o

Proof:

pi(t) dt = (kt) e- kt dt

k' jsT,
= t'e -kt dt.

Using the identity

xmeaxdx =eax E (_ 1)r m!t rl
r =0 (m -r)! ar+

this becomes

0 Pi(t) dt e- (ir)! (k)r 1o

k' k.0 i!

(9)

(10)

(11)

e- kT iv T
r =o (i -r) ! k+l|

-e kT, (kTr)'- r=k - r0 (i - r)U

I O
=k 1e kiT,3-

=
I
{1 -Ei+I(Tl). (12)

Property 4:

=(t) PL - 1(t)
fLt)1k(1 EL(Tr))

Proof: To derive this conditional density function we parti-
tion the interval (0, T7) into N segments of length A = T,/N, and
we compute the probability that the Lth shock takes place in the
ith time interval ((i -1)A, iA]. Since this can be caused by having
L - 1 shocks before (i - 1)A and at least one shock in the interval
((i -1)A, iA], or by having L - 2 shocks before (i -1)A and at
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least two shocks in the interval ((i - 1)A, iA], etc., the probability
of failure in the ith interval is given by

L
I PL j((i - 1)A)[1 - Ej(A)]
j=l

= PL- j((i - 1)A) e(k) -
j=l q=j q.

l)A)]~ A
IZ PL s((i -)) (Akye Ak (13)

Taking the probability density function at a point t in the interval
((i - 1)A, iA] to be limiting value of this quantity divided by A as
A goes to zero [7], it is observed that the terms of (13) containing
powers of (Ak) greater than 1 go to zero in the limit. As such, the
probability density function for the Lth shock to take place at
time t is given by

limit PL- ((i - 1)A)(Ak)e k ((i -))
A-_O A

(14)

Finally, since we are interested only in the conditional probability
density function that the Lth shock will take place at time t, given
that the component fails on-line, the quantity of (14) must be
normalized, yielding

Proof:

T= Pf Tf + PrTr

k1-EL+(T1)= {1-EL(Tr)} k 1-EL(T(r) + TFEL(TT)

=
L
1- EL+1(T7)| + T,EL(T,). (17)

Property 7:

T* = L

Property 8:

d(Pf)
d(kT,) =P-l~ and d(P,) - PL - 1 (T).d(kTr)= PL(

Proof: This result follows simply by differentiating the ex-
pressions for Pf and P, of properties 1 and 2 analytically:

P, = EL(T,)
L-L (kT,) ekT
i=O i!

=_e-kTr +L,(kTr)Lk
- kr+ (k7) e kT (8

f(t)=kPL -((i - 1 )A) PL-l (t)

Pf k(I -EL(T,))
(15)

as was to be shown.
Property 5:

L1-EL+l(T7)
- k 1-EL(T4)

Proof: Since Tf is the expected lifetime of the components
which fail before replacement,

Tf= tfL(t)dt

Tr tPL -(t) dt

°k'{1EL(Tr)}

X ekt dt

f{1-EL(Tr)}

LT, (kt)L e ktkf{- EL(T,)}

Tr

-L pL(t) dt

{1-EL(T,)}
(16)

From Property 3, (6) thus reduces to the desired equality.
Property 6:

L
T = {1f EL +lI(Tr)} + T, EL(Tr).

k

Thus

d(P,)
e kT, + L-1 i(kTr)'-1 (kTr)'e_ kT,

d(kTr) - [= i
L (kT,) - 1 L (kTr)
- i=(i 1ee-, - ~ e kT,

-EL 1-EL

- -PL- I(T).
Moreover, since

Pf = 1 - Pr

d(Pf) d(1 - Pr)
d(kT,) d(kT) =PL- 1(T,).

Property 9:

d(kTf) - L [1 - EL(T,)}pL(T,) - {1 - EL+ 1(T7)}PL 1(-T)
d(kT,) [1 - EL(Tr)]2

Proof: From Property 3,

kTf=L l-EL+l(T)
1-IEL(T7)

Thus by direct differentiation

d(kTf) = L - EL(Tr)PL(T) -{1 -EL + I (T7)}PL - 1 (Tr)
d(kTr) {1 -EL( )J2

(19)

(20)

(21)

(22)

(23)
Property 10:

d(kT)EL(Tv).

Proof: From Property 6,

T = {1 EL+1(T,)} + TrEL(Tr). (24)
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Hence

kT= L{1 -EL+l(TT)} + kTrEL(Tr)

Thus by direct differentiation

d (kT)
d(kT7) = L{PL(Tr)} + (k Tr(-PL - 1 (Tr)) + EL(TT)

= LpL(TT) - kTrPL -(Tl) + EL(T7).

Since

LPL(Tr) = L e-kT,

= (k Tr) (kLT7) e kT,

= kTrpL -1(T),

(25)

(26)

(27)

this reduces to

d(kT) - EL(Tr) (28)d(kT7)
as required.
Given the above statistics for replacement, on-line failure, and

expected time to failure of a component with estimated lifetime L
and assumed replacement time T, we desire to choose TI (given L)
which minimizes some appropriate cost function. Intuitively, this
cost function should represent both the cost of on-line failure and
the cost of wasted component lifetime due to replacing compon-
ents before failure [12], [13]. We therefore adopt the cost
functional

cost = CfPf + Cw(kT* - kT). (29)

Here Cf and Cw are appropriate weight factors representing the
cost of on-line failure and the cost of component lifetime wastage,
respectively. Thus the first term in the cost functional represents
-the expected cost of a failure (i.e., the probability of an on-line
failure times the cost of such a failure), whereas the second term in
the cost functional represents the expected cost of wasted com-
ponent lifetime (i.e., the expected lifetime reduction times the cost
per unit time for such a lifetime reduction, with k serving as a
normalizing factor).
To minimize the cost functional of (29), one simply substitutes

the values for Pf(T7), T*, and t(T7) computed in the preceding
pages, differentiating the cost with respect to kTr and setting it
equal to zero. This then results in the equality [4]

0 = CfPL 1(') - CwEL(Tr) (30)

where d(Pf)/d(kT7) is given by property 9 and d(kT)/d(kT7) is given
by property 10. Thus the choice of an optimal Ti (given L) is
reduced to the solution of a single nonlinear equation in one
unknown. The solutions of this equation are plotted in Fig. 1 for a
number of values ofL and Cf/Cw. Indeed, it can be readily shown
that (30) has exactly one solution for T, > 0. Moreover, the
function

RL(t) = CfPL- l(t) - cwEL(t) (31)

takes on negative values for 0 < t < Ti and positive values for
Tr < t; hence in an on-line maintenance system one need not even
solve (30). Rather, one simply evaluates RL(t) at the time of the
next scheduled maintenance. If this results in a negative number,
the next scheduled maintenance precedes the optimal replacement
time, and hence we should wait at least until the next scheduled

3 4 5 6 7 8 9 10 L

Fig. 1. Replacement time (kT,) versus Lifetime L with different weight constant.

maintenance (when we will have more data) to replace the
component. On the other hand, if the evaluation of RL(t) at
the next scheduled maintenance time results in a positive value,
the optimal replacement time will have passed by the next
scheduled maintenance, and hence the component should be
replaced at the present maintenance interval.

V. THE ALGORITHM

Summarizing the on-line maintenance algorithm resulting from
the above theory takes the following form. At the gth scheduled
maintenance interval (at time gT) one measures the component
parameter C9g If Cg is already out of tolerance, the component is
simply replaced, and no further analysis is required. If, however,
Cg is in tolerance (Cg > 0 in our notation), it is used together with
the values of the component parameter measured at the previous
maintenance intervals to estimate the dynamics of the failure
model for the component. Here sequential refinement schemes
may be used both to include the effect of Cg on the estimates made
at the (g - 1)st maintenance interval and to increase the order of
the polynomial used to represent the component failure dynamics.
Once the component failure dynamics have been satisfactorily
estimated, one evaluates (31) to estimate whether or not to replace
the component. If RL((9 + 1)T) > 0, the component is replaced,
whereas if RL((9 + 1)T) < 0, the component is not replaced, and
the system is returned to service until the next scheduled
maintenance.

VI. SIMULATIONS
A computer simulation of an on-line periodic maintenance

system based on the above described algorithm was performed for
600 maintenance intervals with a new component replacing the
old component after each replacement decision and/or on-line
failure [4]. The system was subjected to computer-generated Pois-
son shocks with constant k = 0.1 shocks per hour and a mainten-
ance interval of T= 20 h. The simulation was first run using
identical components with L= 28 (expected lifetime of 14 main-
tenance intervals) and then repeated using random components
and noisy data measurements.
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TABLE I
TOTAL REPLACEMENTS AND FAILURES WITHIN 600 MAINTENANCE

INTERVALS FOR DIFFERENT Cf /Cw

C,/CW No, of replacement No. of failure

50 48 7
75 56 1

100 52 2
150 54 2
200 54 2

TABLE II
TOTAL REPLACEMENTS AND FAILURES WITHIN 600 MAINTENANCE

INTERVALS FOR VARIOUS FIXED REPLACEMENT STRATEGIES

Constant
replacement time No. of replacement No. of failure

every 6 intervals 100 0

every 7 intervals 85 0

every 8 intervals 75 0

every 9 intervals 65 1

every 10 intervals 59 1

every 11 intervals 48 6

every 12 intervals 39 11

TABLE III
OVERALL COST WITH DIFFERENT METHODS AND DIFFERENT Cf /Cw

fc/cwCoat CfO
Methods 50 75 100 150 200

every 6 intervals 1600 1600 1600 1600 1600

every 7 intervals 1096 1096 1096 1096 1096

every 8 intervals 900 900 900 900 900

every 9 intervals 698 723 748 798 848

every 10 intervals 530 555 580 630 680

every 11 intervals 612 762 912 1212 1512

every 12 intervals 750 1025 1300 1850 2400

the algorithm 690 471 512 668 768

TABLE IV
TOTAL REPLACEMENTS AND FAILURES WITHIN 600 MAINTENANCE

INTERVALS FOR VARIOUS FIXED REPLACEMENT STRATEGIES
AND THE ALGORITHM AT DIFFERENT NOISE LEVELS

noise 20
level 20%

No. of N
method replace

every 6 100
intervals

every 7 85

intervals

every 8 75
intervals

every 9 64

intervals

every 10
56

intervals

every 11 45
intervals

every 12
36

intervals

30% 40% 60%

No. of No. of No. of No. of No. of No. of No. of
fail replace fail replace fail replace fail

0 100 0 100 0 94 6

0 85 0 84 78 8

0 72 3 71 4 64 12

2 63 3 60 7 52 17

4 51 9 45 15 45 18

10 45 10 45 10 39 20

15 35 16 36 17 31 23

thealgorithm 56 3 55 5 55 5 50 1 1

TABLE V
OVERALL COST FOR DIFFERENT METHODS AT DIFFERENT NOISE LEVELS

\noise

method

every 6 intervals

every 7 intervals

every 8 intervals

every 9 intervals

every 10 intervals

every 11 intervals

every 12 intervals

the algorithm

0%

1600

1096

900

748

580

912

1300

20%

1600

1096

900

848

880

1340

1728

30%

1600

1096

1200

948

1380

1340

1828

40%

1600

1280

1300

1376

1980

1340

1984

60%

2200

2008

2128

2432

2364

2452

2612

512 752 980 752 1608

For the case where identical components were employed, Table
I gives the total number of replacements and failures resulting
from the application of the algorithm over the 600 simulated
maintenance intervals with different values of Cf/Cw. For
comparison, Table II shows the total number of replacements and
failures which would have resulted from a fixed replacement
strategy ranging from six to twelve maintenance intervals. Since
the cost function is

cost = Cf Pf + Cw(kT* - kT) (32)

the overall cost can be expressed as

cost = Cf (number of failures)cw
+ 0.1 (280* (number of components used) -12000).

(33)
The overall costs resulting from the application of our algorithm
and the various fixed replacement schedules may be computed
from the data in Tables I and II. The resultant costs for different
values of Cf/Cw are given in Table III.

Note that since L = 28 for each component in this simulation,
an optimal replacement strategy of approximately ten mainten-

ance intervals can be computed from (30) without estimating L.
As such, it is not surprising that this fixed replacement strategy
resulted in lower costs than the algorithm. It should, however, be
noted that the algorithm did not have the advantage of an a priori
knowledge of L, and yet it still outperformed all of the fixed re-

placement strategies except the optimal strategy (that is, optimal
once L is known).

In our second simulation, random noise was added to the data
to simulate both the effects of imperfect measurement and the
effect of components with random failure characteristics. Various
simulations were run as before for 600 maintenance intervals each,
with k = 0.1 and T = 20 and with noise levels ranging between 20
and 60 percent of the tolerance interval. The results of these simu-
lations are given in Tables IV and V. Except for a single case,

which we believe to be anomolous, the algorithm outperformed
any fixed replacement strategy.

VII. CONCLUSION

In the preceeding pages, we have described a curve fitting algor-
ithm for the prediction of failures in analog devices. The algorithm
was tested in a variety of situations and found to be surprisingly
effective in predicting failures with relatively little wastage of com-
ponent lifetime and on-line failure cost.
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In Section II, we investigate the statistical accuracy of truncated
sampling interpolations of uniform band-limited stationary
random signals sampled at the Nyquist rate, and in Section III we
point out a very simple way in which the accuracy of a Runge-
Kutta simulation algorithm can be improved.

II. PRACTICAL CARDINAL FUNCTION INTERPOLATION
OF BAND-LIMITED RANDOM SIGNALS

Consider a stationary random process of mean zero and var-
iance a , with a uniform band-limited spectrum. We will assume
that samples are taken at an interval T = 1/2w s (w being the
single-sided bandwidth) and are therefore mutually uncorrelated.
Let us approximate the sample functions f(t) of our random
process over each interval (n - 1)T to nT by the truncated
expansion:

k + n

.fa(t) = E ft sinc (2wt - i)
i = j + n

where

sin 7rx
sinc x =

7rx

(1)

(2)

Truncated Sampling Expansions for Band-Limited
Random Signals

R. B. KERR

Abstract Truncated expansions based upon the sampling
theorem but containing only a few terms can be very useful for
practical interpolations of band-limited random signals. Such inter-
polations can be utilized, for example, to improve the accuracy of
algorithms used to find the dynamic response of systems to band-
limited inputs. The statistical accuracy of such interpolations is
investigated, and one very simple application, which yields a

Runge-Kutta simulation algorithm of improved accuracy with very
little increase in computation, is indicated.

I. INTRODUCTION

The sampling theorem for band-limited signals, which is so

invaluable theoretically to signal analysis and information theory,
can also be put to very practical use in the interpolation of
sampled signals, if expansions of only a few terms are employed.
Besides applications involving straight signal reconstruction
(image processing, etc.) truncated sampling expansions can be
used to improve the accuracy of digital-simulation algorithms
used to determine dynamic-system responses, when the system
inputs are sampled at a rate equal to or exceeding the Nyquist
rate. Of course, the simulation accuracy can always be improved
by increasing the sampling rate. This, however, is not always pos-
sible or desirable. Suppose, for example, that we are trying to
determine the response statistics of an ocean platform or a

moored ship excited by random ocean-wave forces. In this case

simulation runs of long duration are required, and if actual wave
data are used, they will probably be available only at a fixed
sampling interval. Even if the input data are synthetically gen-
erated, it is desirable to be able to use a rate not too muchi in
excess of the Nyquist rate. In cases such as this, the use of a few
terms of the sampling expansion can often improve simulation
accuracy with very little increase in computation.
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and the number of terms used in the truncated sum is k -j + 1.
We may define the mean-square error function:

E(t) = <[f(t)-fa(t)]2> (3)

(< *> denotes statistical expectation). E(t) is zero at each sampling
point and is a periodic time function since the random process is
stationary and the points (samples) used for the interpolation are
related to each interval in the same way. Hence, as an error meas-
ure, we may define the time average of E(t):

E(t) = -T E(t) dt. (4)

Another useful error measure is the mid-interval mean-square
error E(T/2), which will be the maximum mean-square error if
"symmetric" data is used for the interpolation i.e., if the same
number of samples on either side of the interval being interpolated
are used in the sum (1); in this case j + k = -1. (If "present and
past" data are used (k = 0), then t = T/2 will not be the time at
which the maximum statistical error occurs.)
To aid in the calculation of E(t), we introduce the following

notation:

0,(t) sinc (2wt -n) = sinc T

0ck,- (t) dt.T7

(5)

(6)

In order to evaluate E(t) for various size expansions, we find that
we need to calculate c,,. This can be done in terms of the sine-
integral functions by a simple change of variable, and we obtain

Un= [Si (n27r) -Si (n -1)27r] (7)

where

Si (X) = K s Y dy. (8)

It may be noted that the (,, simply represent the areas of the
"lobes" of sinc2 (t/T), as indicated in Fig. 1. (Note that . -= -
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