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the reversed conventions and the omissions of rate-to-level
influence links, particularly so if s/he has access only to the formal
diagrammatic model as is the case in Forrester’s World Dynamics
[7] or Urban Dynamics [13].
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Regression Metamodels for Generalizing
Simulation Results

JACK P. C. KLEIJNEN

Abstract—Generalization of simulation results is needed for
sensitivity analysis, optimization, ‘‘what-if” questions, etc. To meet
these needs, several types of metamodels are presented. One type is
discussed in detail, namely, linear regression models. These models
can represent interactions among input variables of the simulation
program and can be validated through statistical tests. Experimental
designs can be utilized for efficient and systematic exploration of
possible system variants. The approach is compared to Meisel and
Collins’ piecewise linear models. References to practical applications
are included.

I. INTRODUCTION

Simulation is the technique most applied to practical problems
in operations research, systems analysis, and the like. However, a
major disadvantage is its ad hoc character. In this correspon-
dence, we present a methodology for generalizing simulation re-
sults. Our approach is based on the familiar regression analysis
technique. This technique further enables us to measure the (stat-
istical) accuracy of our generalization. The exploration of the
great many systems that could be simulated is systematized and
made more efficient by means of the experimental design
technique.

The regression model serves as a metamodel, i.e., as a model of a
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model. Such an auxiliary model is useful for understanding the
intricate simulation model itself. During the construction of the
simulation program, we gain much knowledge about the details of
the real-life system and its model, but not about the system as a
whole. Running the simulation program for a number of situa-
tions (different parameters, variables, structural relationships), we
hope to arrive at an understanding of the system, i.e., its simulation
model. Such an interpretation and generalization enables us to
meet a number of demands: sensitivity analysis, answering what-if
questions, and optimization. Finding the input values which yield
a desired fixed output (control) requires extensive trial and error
without a metamodel; see [13], [20]-[22]. “Selling” the simulation
results to the user may be facilitated if we have a simplified model
of the complicated simulation model. A simplified analytical
model might be derived after the most important variables in the
simulation have been identified; for examples, see [8], [19]. Several
authors have emphasized the need for a metamodel in order to
meet the above demands; see [2], [3], [5], [16], [18], [21].

Different types of metamodels can be used.

1) Common Sense Graphical Approach: Change one variable,
say x. Observe the resulting output y. Repeat this procedure a
number of times. Plot the (x, y) combinations. Fit a curve by
hand, and conclude whether x has an important effect on y. Our
approach actually formalizes such hand fitting applying the least
squares algorithm. It extends the procedure into multiple dimen-
sions, and it systematizes the various steps.

2) Explicit Formal Metamodels: Several models can be found in
the literature.

a) Meisel and Collins [16] propose piecewise linear approxi-
mations, which replace the handfitted curve of approach 1); see
[4] for algorithms. They apply least squares for the computation
of parameters [16, p. 353]. Applications can be found in [6], [7] In
Section IV, we shall return to their approach.

b) Linear regression models: Instead of piecewise linear func-
tions, we use functions that are linear in the parameters. Linear
regression analysis has the great advantage of being a familiar
technique. Regression models have been extensively applied to
interpret and generalize results in agricultural, chemical, and en-
gineering experimentation. Here these models are also known as
analysis of variance (ANOVA) and include “main effects” and
“interactions”; see the next section. Regression metamodels in
simulation have been advocated by a few other authors. For
instance, in [22] main effects and interactions are estimated and
“control” questions answered in a job shop simulation. In [14], a
steel plant simulation is analyzed by means of a regression
metamodel.

II. REGRESSION METAMODELS

Let x; denote a factor j influencing the outputs of the real-world
system (j = 1, 2, -, m). A factor may be qualitative or quantita-
tive, continuous or discrete; in [10, p. 300] it is shown how a
qualitative factor can be represented by dummy variables. The
response of the real-world system is a time series. We shall con-
centrate on a single-response variable; for multiple outputs, we
apply our procedure to each variable separately. In order to com-
pare system configurations, we characterize a time path by one or
a few measures such as its average or the slope of a fitted trend.
Let y denote a measure characterizing a time path of the real-
world system. Hence the response variable y is a function of the
factors x:

y =Afl(x1v X2, """, xm)- (1)
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This system is approximated by a simulation model. Here y is a
function of k factors x; (j=1, -, k), plus a vector of random

numbers r, or
y=f2(xls X2y "y Xk r) (2)

where k is much smaller than the unknown m and r symbolizes the
effect of all factors x in (1) not explicitly represented in (2). Note
that the metamodel approach also holds if no sampling is used so
that r vanishes. The simulation model is specified by a computer
program denoted by f,. This model may be approximated in turn
by a metamodel (within a specific experimental area E; see below).
We propose a metamodel that is linear in its parameters f, but not
necessarily in its independent variables since terms like x2 can be
utilized. A very simple metamodel to express the effects of the k
factors would be

Yi=Bo+ Bixis 4+ + Puxu + e, i=1,,n (3)

where in simulation run i (or observation i) factor j has the value
x;; (j=1,--, k). These values are assumed to determine y;
linearly except for e;, the noise which has expectation zero. Such a
simple metamodel implies that a change in x ; has a constant effect
(viz. B;) on the expected response &(y). Such a (simplistic) model
was used for sensitivity analysis of medical services in [15]. A more
general metamodel postulates that the effect of a factor j also
depends on the values of the other factors. This can be formalized
as in (4) where for illustration purposes we take k = 3:

Vi = Bo + (Bixis + B2xiz + Baxi3)
+ (Br2Xitx12 + PraxiiX13 + BaaXiaxiz) + €. (4)

Here the parameters (coefficients) B,,, B3, and f,; denote inter-
actions between the factors 1 and 2, 1 and 3, and 2 and 3. A
graphical illustration of interaction in the case of two factors is
shown in Fig. 1. In Fig. 1(a), the curves are parallel, i.e., the effect
of x, on &(y) does not depend on the level of x;. In Fig. 1(b), the
interaction is positive (complementary factors) so that the increase
in &(y) is stimulated when the increase of x, is accompanied by an
increase in x;. In Fig. 1(c), the marginal output of x, is much
smaller when more of x, is available to be substituted for x,; see
also [9, p. 240). The need to consider interactions is demonstrated
by a practical steel plant simulation [14].

If all factors are quantitative continuous variables, then we add
“purely quadratic” effects B;;. This yields

3 2 3 3
yi=Po+ jzl Bixij + Y, ; Biyxijxiy + ; Biix}i+ e (5)
= 7 <r

which represents the Taylor series expansion of (2), cut off after
the second-degree terms. In practice, it is rare that all factors are
quantitative (yet it is possible [16]). Hence we shall concentrate on
the metamodel, with k main effects §;, k(k — 1)/2, interactions §;;,
and the general mean f, or

k k-1 k
yi=Po+ 121 Bixi; + Z <Z Bii xijxij + e, i=1",n
= J J
©6)
We start by postulating a metamodel such as (6), but next we test
statistically whether this assumption was realistic! Two statistical
tests can be used.

1) Generate some new observations y from the simulation
model. Use a t-statistic to compare these observations y to the
predicted value ) based on the regression metamodel estimated
from the old observations. The “new” observations may corre-
spond to the “center” of the design (x; = 0), in order to check
whether purely quadratic effects are zero. '

Ely
| / =
/ 4t
X2
@
E(_y) Xy = +1
/ o=
2
(b)
Ely)
Y Xy = +1
/—— xi = -1

X2
()

Fig. 1. Interactions. (a) B,, = 0: no interaction. (b) 8,, > 0: complementary. (c)
B,, < O: substitution.

2) The “lack-of-fit” F-statistic which compares the “mean resi-
dual sum of squares” to the “pure error” can be computed (for
details see [13]).

If the postulated metamodel turns out to be unreasonable, we
have several alternatives.

a) Add three-factor interactions: If y' is a shorthand notation
for y in (4), then this equation may be expanded to

()

Three-factor interactions are difficult to interpret intuitively and
increase the number of parameters. More parameters means noisy
insignificant estimators. Moreover, science’s goal is to explain a
phenomenon parsimonously.

b) Look for transformations: For instance, if y denotes wait-
ing time and x, and x, denote mean arrival and service rate, then
we suggest the transformation x’ = x; /x,. In [13], we found that
the response variable (average storage of containers in a harbor
simulation) reacted nonlinearly to the ships’ interarrival time x.
However, the simple transformation 1/x (interarrival rate)
resulted in a linear response function. A popular transformation
in econometrics is x"=log x and y' =log y so that the par-
ameters B represent elasticity coefficients. A more complicated
example can be found in [23]. We strongly recommend to look for
appropriate transformations from the very beginning of the study.
If all else fails, we may proceed to option (3).

¢) Reduce the experimental area E: This option limits the
generality of our conclusions. However, if the only purpose of the
metamodel is to find the optimum x-values, then a small area E
can be used, a metamodel fitted, and the direction of better x-
values determined. See [17] for details on this so-called response
surface methodology (RSM) and [10] for a bibliography.

’
Yi=yi+ Br23Xi1 Xi2 Xi3.
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Note that our specification of the metamodel is based on intui-
tion, prior experimentation, theoretical background, etc. A
systematic procedure to derive the structure of the metamodel,
based on pattern recognition, is explored in [1].

The parameters f can be estimated and tested for significance,
using regression analysis with either ordinary or generalized least
squares (see [13]). So statistical tests (F- and ¢-tests) can be used to
determine objectively whether the metamodel is “correct” and
which factors are “important;” see the methodological problems
raised in [21, p. 79].

III. EXPERIMENTAL DESIGN

Next consider the selection of the values x;; for the independent
variables j to be used as input into run i of the simulation
program. This selection is the domain of experimental design.
Such designs have been developed since the 1920’s and have been
widely applied to experiments in agriculture, chemistry, etc. In
sociotechnical systems, the scientific design of experiments is
difficult and expensive (disruption of the organization). However,
in a simulation model of such a system, the experimental factors
are completely under the scientist’s control.

In [13], we studied six factors in a complicated harbor simula-
tion. We started by letting each factor assume only two (extreme)
values. Simulating all 2° = 64 factor combinations would take
very much computer time. Moreover, we conjectured that, in the
metamodel, only 13 effects are important, namely, the six main
effects and six particular interactions (plus the overall mean). To
estimate these 13 effects we need much less than 64 combinations
(system variants). Using experimental design methodology we
selected only 16 combinations for actual simulation. In [12], seven
factors were examined in an inventory-management system, viz.,
IBM’s package IMPACT. Only 16 combinations (runs) gave us
an idea of the main effects and possible interactions of these seven
factors. Summarizing, experimental design can handle the expon-
ential growth of factor combinations as the number of factors
increases.

IV. REGRESSION VERSUS PIECEWISE
LINEAR METAMODELS

Let us briefly compare our metamodels to the Meisel and Col-
lins piecewise linear approximations. They claim that polynomial
models “extrapolate very poorly” and “often interpolate poorly”
[16, p. 354]. We would argue that there should be no need for
extrapolation since we select the x-values such that they represent
extreme conditions. If nevertheless it would turn out that these
“extremes” are not extreme enough, then our models do not
become high-degree polynomials like the fifth-order polynomial
mentioned in [16, p. 351]. Our metamodels are indeed cruder than
piecewise linear models as illustrated in Fig. 2. Nevertheless, they
are useful auxiliary models for sensitivity studies and the like, as
shown by [12]-{14], [22]. For optimation, our approach may be
extended by RSM, mentioned in Section II. The advantages of our
cruder metamodel are easy intuitive interpretation (main effects
and interactions) and very limited experimentation. Meisel and
Collins present case studies involving only two or three variables,
but using 42 and 450 factor combinations, respectively!

V. CONCLUSION

How can we apply a metamodel such as (4)?

1) Select n combinations of the factors x,, x,, x3. This selection
fixes x;; (i=1,-,n)(j=1,-,3)

2) Use the original simulation model to compute the output y;
for each combination i.

yl
= Bo
» X
y1 ~y=Bo+Bix
. %
e
— X
Y, . //Y=|30'9|’(
P Ty BoeBix «Bux?
’ L
A
/

—X

Fig. 2. Piecewise linear versus polynomial metamodels.

3) Use the n observations on the output y (step 2) together with
the corresponding values of the input variables x; (step 1), in order
to estimate the effects B, B,,, etc, in (4). We can use simple
regression analysis since (4) is linear in its parameters f.

4) Test whether the postulated metamodel of (4) is indeed an
adequate description of the changes in y as the x; vary! The
validity of the metamodel may be tested by predicting y for some
new combination of the x; using the metamodel with estimated
parameters B and comparing the prediction y to the value y ob-
tained from the original simulation model.

5) If the metamodel does not pass the test of 4), we may try
other specifications for the metamodel.

6) If the metamodel is accepted, we may proceed as follows. If
the output is sensitive to specific assumptions, we may spend more
time on the determination of the exact values of these model
parameters. If the exact values cannot be determined, we may
provide solutions for a variety of parameter values. When trying
to optimize (or just improve) the criterion, we can concentrate on
the important factors. The signs of their estimated coefficients B
tell us in which direction these factors should be changed. Relative
values like B, /B, show us the relative magnitudes of the changes
in the various factors.

The above approach has shown its merits in several practical
applications: inventory, harbor, steel plant, job shop simulations
[12]-[14], [22].
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A Simple Technique for the Generation of Correlated
Random Number Sequences

S. P. NAWATHE anD B. V. RAO

Abstract—A simple technique, based on the theory of optimal
linear prediction, is presented for the generation of cross-correlated
random number sequences. The method is essentially a computer
simulation of the process of linear prediction with the error of
prediction playing an important role. The algorithm rearranges a
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random number sequence with reference to another so as to obtain the
desired correlation between the two. With no specifications on the
distribution of the random number sequence (linear prediction does
not assume knowledge of the probability law of the random variables)
the method should therefore be applicable to all continuous distribu-
tions. The validity of the algorithm has been justified through
the derivations of the expressions for the expectation and variance of
the correlation coefficient. Satisfactory results have been obtained for
three typical distributions, viz., normal, uniform, and exponential.
The assumptions made regarding the behavior of the error of
prediction have been verified through computations. The method is
expected to find applications in various disciplines.

INTRODUCTION

Monte Carlo simulation provides a convenient means for the
qualitative investigation of the behavior of a stochastic system.
The scope of this method is determined by the extent to which the
statistical characteristics of the random number generator
resemble those of the system variables. There are many well-
known techniques by which it is possible to generate random
numbers having the required distribution characteristics [1], [2].

In some cases, the system variables display statistical inter-
dependence. As an example, consider the problem of reliability
analysis of a power system. In this case, failure of one of the power
transmission links may cause overloading of another, thereby in-
creasing its failure probability. While simulating such a system, it
becomes necessary to generate sequences of random numbers
having the prescribed mutual cross correlations among them.

It is well-known that a multivariate normal sample can be gen-
erated through appropriate linear combinations of independent
normal random variables. These techniques are applicable only to
the case of the normal distribution. Moreover, they involve prob-
lems like computation of the square root of the covariance matrix
or the solution of a system of nonlinear algebraic equations [3].

Li and Hammond [4] suggest a procedure for generating cor-
related random variables with specified nonnormal probability
distribution functions. In this procedure, a multivariate nonnor-
mal sample is obtained through appropriate nonlinear transfor-
mation of a multivariate normal sample. The method involves
operations like “predistortion” of the desired correlation matrix
(in order to compensate for the distortion during the nonlinear
transformation), evaluation of the square root of the correlation
matrix (for the generation of multivariate normal sample), and
transformation from normal to the desired distribution. Although
standard procedures are available for all these operations, the
overall procedure is quite tedious. If the inverse of the desired
distribution is not known in closed form, the transformation is
performed by numerical methods. In such a case, the method is
prone to quantization errors at two stages. (Evaluation of the
error function is equivalent to transformation from normal
(Gaussian) to a uniform distribution). Moreover, this method fails
if the required correlation matrix does not yield a positive
semidefinite predistorted correlation matrix. We propose a simple
alternative approach to the same problem.

The problem to be considered in this correspondence is that of
the generation of two random number sequences [X y] and [Yy] of
sample size N, to represent the two jointly distributed (not neces-
sarily normal) random variables X and Y, respectively. The mar-
ginal distributions of X and Y are assumed to be known. The
marginal distributions of [Xy] and [Yy], when averaged over the
entire sample size, are so adjusted as to match those of X and Y.
respectively. (The elements of [Yy], in general, do not have the
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