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Discrete Relaxation for Matching
Relational Structures

LES KITCHEN AND AZRIEL ROSENFELD, FELLOW, IEEE

Abstract Local constraint analysis ("discrete relaxation") is
used to reduce ambiguity in matching pairs ofrelational structures. It
is found empirically that if the set of possible local properties is
sufficiently large, this generally results in unambiguous
identifications after only a few iterations.

PREFACE
In the past, "relaxation" methods have usually been applied to

the problems of identifying points in a fixed simple structure
(namely, the pixels in a digital picture array). This correspondence
addresses the more general problem of identifying objects which
may be parts of an arbitrary structure. Such a situation arises in
the higher level processing of images, where the objects may corre-
spond to regions of an image, extracted by some segmentation
process. Regions would be linked by such relations as "is above,"
"'surrounds," or "is larger than."
The first two sections of this correspondence establish some

theoretical results concerning the effectiveness of relaxation in
such situations. The third section demonstrates the application of
the method to some simple but not unreasonable problems.

I. RELATIONAL STRUCTURES AND MONOMORPHISMS
Many authors have used finite relational structures as a forma-

lism for describing visual scenes and for the recognition ofknown
objects in such scenes. (For example, Barrow and Popplestone [2],
Barrow et al. [1], and Winston [15].) In this section we introduce
the notion of a relational structure using a treatment which
closely follows Barrow et al. [1].

Definition 1: A (finite) relational structure is a triple KX, Yb, 4>.
X is a finite set of nodes, called the carrier of the relational struc-
ture. is a finite set of predicates. Each predicate P has associated
with it a positive integer called the order of the predicate. We write
P{) if P has n arguments. is a function which maps each predi-
cate P() E 3R to an n-ary relation on X. That is, 40(P(f)) C Xn.
For xl, X2, , x,, E X, p(n) C b' we write p(n) (xl, x2, ..., x")

precisely when (x1, x2, ..., x") E (P(n)). Conventionally, a rela-
tional structure is referred to by the name of its carrier, its two
remaining components being left implicit.

Definition 2: Let M and W be two relational structures with the
same predicate set A one to one mappingf: M -- W is called a

monomorphism of M into W (written f: M < W) when for all
P(') E E and x1, x2, , x,, E M, p(n) (xI, x2, ..., xn) implies p(n)
(f(xI), ., f(xn)). That is, f preserves the structure of M. If there
exists a mapping f: M < W, we will often write merely M < W,
the mappingf being left implicit.
The set M can be thought of as a model which describes some

object of interest, while W can be thought of as a description of a
world, or universe, in which we are searching for an instance of this
object. Thus the problem of finding the monomorphisms between
two relational structures is of some importance. In general, this
problem is computationally very difficult. (It is, in fact, nonpoly-
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nomial (NP)-complete, since it is a generalization of the subgraph
matching problem for graphs, a problem which is known to be
NP-complete [9].) However, for those relational structures which
are commonly encountered, we would hope that the problem is
not so intractable. That is, while the worst case behavior of an
algorithm for finding monomorphisms may be exponential, "on
the average" it may find solutions quite rapidly.

II. DISCRETE RELAXATION
The term "relaxation" has been used to describe a class of paral-

lel iterative methods for classification or constraint analysis
(Davis and Rosenfeld [4], Rosenfeld [10], Rosenfeld et al. [11], and
Zucker et al. [16]). All of these methods have the following in
common: we wish to calculate a value of some sort for each point
in a structure. This is done by first assigning to each point an
initial approximation to this value. Then the approximation at
each point is improved (in some sense) by examining the values of
the approximations at its neighbors in the structure. This im-
provement step can be repeated until some condition is satisfied,
typically until no further improvement can be made. The "values"
referred to need not be numeric; they may be symbolic labels of
some sort, and an "approximation" to such a value might be a list
of possible labels, each with some sort of likelihood measure at-
tached. The "structure" referred to is often the grid of pixels which
represents a digital picture, and in this case the "neighbors" of a
point would be its adjacent pixels on the grid. This is by no means
intended as a definitive description of relaxation methods, but
merely to indicate informally the type of processing which all
these methods have in common.
The same type of approaclh can be applied to the problem of

matching relational structures and is developed below. Assume
that all relational structures mentioned have the same predicate
set J9.

Definition 3: An assignment of a relational structure M to a
relational structure W (the order being material) is any subset of
M x W. Thus an assignment ofM to W is a pairing of elements of
M with elements of W. It is in a sense a binary relation between M
and W but should not be confused with those relations that are
responsible for the internal structures ofM and W.

Definition 4: Let M be a relational structure and x E M x W.
The neighborhood of x (written Nbd(x)) is the set

{y E M: 3P(n), X1, X2, ', Xn i, j such that
pln,(X,, X2, *-, xn) and x = xi and y=xj}.

The neighborhood of x consists of all those nodes which are
directly related to x in any way by a predicate.

Definition 5: Let R be an assignment of M to W. A pair (x,
y) E M is said to be locally consistent with respect to R when there
exists a monomorphism f: Nbd(x) < Nbd(y) such that f(x) =y,
and f c R, considered as a set of ordered pairs. In other words,
R permits a mapping which preserves the local structure around x
and y.

Definition 6: An assignment R is said to be locally consistent
when every pair in R is locally consistent with respect to R. The
notion of a locally consistent assignment is considerably weaker
than that of a monomorphism. The directed graphs of Fig. 1
furnish an example. The assignment which pairs every node of the
"triangle" with every node of the "square" is locally consistent, but
there can be no monomorphism between the two. However, local
consistency is a "natural" generalization of monomorphism, as
the following theorem shows. Any mapping from M to W, where
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Fig. I. Many locally consistent assignments. but no monomorphism.

M and W are relational structures, can be regarded as an assign-
ment of M to W, since a mapping is merely a particular type of
pairing. Monomorphisms are precisely those mappings which are
injective (i.e., one-to-one) and are consistent as assignments.

Theorem 1: Let M and W be relational structures, and let f:
M -+ W be injective. The f is a monomorphism if and only iff is
locally consistent.

Proof: Sufficiency-If J is a monomorphism, then clearly.f
must be locally consistent. Necessity-Assume that f is locally
consistent. Let p(n) g9, and let xl, x2 . x- e M, such that
P(")(xi, x2, * , x). Sincef is locally consistent, in particular about
xl, there exists a monomorphism fi: Nbd(x1) < Nbd(f1(xl))
wherefc1 Jf Thus we have P(")(fi(x1)Jf(x2), . ,fj(x,)). However,
f is a function, so the image of every point in M is uniquely
determined. Therefore, fl(x1) =f(x1), fl(X2) =f(x2), etc., and
hence P")((f(xi),f(x2), .f,f(x")). We conclude that f is a mono-
morphism. QED
We now display an abstract version of the discrete relaxation

algorithm, applied to two relational structures M and W:

Ro:=MxW; i:=O;
repeat
i=i+ 1;

R Jall pairs in Ri- 1 which are locally
I consistent with respect to R, -

until Ri =Ri
R* := Ri.

This algorithm at each step removes all pairs from the local
assignment which are not locally consistent.

It is easy to see how this fits into the relaxation framework. The
structure with which we are dealing is the relational structure W.
Each assignment can be regarded as attaching a (possibly empty)
set of model nodes from M as labels on each world node in W.
The improvement step consists of removing those labels which are
locally inconsistent. The following results are generalizations of
those in Rosenfeld et al. [11].

Theorem 2: The above algorithm always terminates.
Proof: At the end of each iteration of the algorithm either

Ri = Ri- 1 or Ri ' Ri- 1. If Ri = Rj I the algorithm terminates.
Since Ro= M x W is a finite set, there can only be a finite
number of iterations for which Ri c Ri- 1. QED

Theorem 3: The assignment R* produced by the above algor-
ithm is locally consistent.

Proof: Suppose the algorithm terminates after k iterations,
that is, R* = RI. However, Rk = {all pairs in Rk-l which are

locally consistent with respect to Rk.- 1}.
But Rk = Rk -1, since the algorithm terminated at this step. So

all pairs in Rk are locally consistent with respect to Rk, hence
Rk= R* is locally consistent. QED

Theorem 4: R* is the maximal locally consistent assignment of
M to W. That is, if R is any locally consistent assignment ofM to
W, then R c R*.

Proof: (by induction on the number of iteration steps).
Basis: R ' Ro = M x W, by definition.
Induction: Suppose R C Ri 1 for some i > 0. Let (x, y) be

any pair in R. This pair is locally consistent with respect to R,

therefore it is locally consistent with respect to RK I since
R c Ri 1. Thus (x, y) E R, by the iteration step of the algorithm.

Conclusion: We see that R c: Ri for all i, and in particular
R c R*.

Corollary: lff is any monomorphismj. M < W, then] c R*.
Thus the discrete relaxation algorithm is guaranteed to capture

any monomorphisms that exist between two relational structures.
In general, R* can contain other pairings as well. Fig. 1 again
illustrates a pathological case where Ro= M x W is locally
consistent. However, it seems that in practice the only locally
consistent assignments are usually in fact monomorphisms (or
trivially the empty assignment). This is borne out by the experi-
ments described below. In those cases where ambiguity remains, a
simple case analysis would suffice to sort out the monomorphisms
embedded in R*. Even though discrete relaxation may gain noth-
ing at all, it seems in practice to assist considerably in finding
monomorphisms between relational structures. The reader should
note that if there are several distinct monomorphisms between
two relational structures M and W, then at best R* will contain
the union of all these monomorphisms, and there will still remain
the problem of disentangling the individual monomorphisms.
(However, this problem is trivial if the monomorphisms are
disjoint.)
Note that in order to determine whether a given pair (x. v) is

locally consistent with respect to an assignment Ri,- ,, we must
still conduct a search for a monomorphism f: Nbd(x) . Nbd(y),
with the other required properties,fJ Ri- 1 andf(x) = y, and this
search must be repeated for every pair in Ri 1. Compared to a
tree-search procedure for detecting monomorphisms, we have
traded one large combinatorial search for many small combina-
torial searches. This would seem to make discrete relaxation con-
siderably faster. Furthermore. the local consistency checks for all
the pairs in Ri 1 are independent and could, therefore, be carried
out in parallel, if suitable hardware were available. It is possible to
use a weaker characterization of consistency which obviates the
search for a monomorphism between neighborhoods.

Definition 7: Let M and W be relational structures, and let R be
an assignment of M to W. A pair (x, y) E M x W is said to be
weakly consistent with respect to R wheni there exists an assign-
ment Q of Nbd(x) to Nbd(y) with the following properties.

I) Q'R.
2) (x, y) e Q.
3) (x, Z) E Q implies y = z.
4) For all p"), and for all x1, x2,.Xn.- Nbd(x), P"'"(x1, X2,

, xY) implies that there exist y1, Y2, , yn E 1r such that
(X1I Ys), (x2, Y2),", (X-, Yn) E Q and P("'(y1, Y2, . yJ). That
is, for every predicate instance in the model which mentions
Ix, R permits a renaming of the arguments so that the predi-
cate holds in the world. This renaming need not be one-to-
one, nor even a function, but x must always be replaced by y.

Weak consistency can be used instead of local consistency in a
discrete relaxation process, and corresponding theorems can be
proved. However, the results it produces are more likely to be
ambiguous, in that weak consistency will permit pairings which
are locally inconsistent.
The basic technique just described is not new. Calling it

"refinement," Ullman [13] applied it to the simpler problem of
subgraph isomorphism. Recently, Haralick and Shapiro [6] have
presented a general theory for constraint satisfaction problems.
Our approach differs from theirs in that 1) it admits the treatment
of distinct predicates of different orders: 2) the mutual constraint
between nodes is treated in terms of variable-sized neighbor-
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hoods, rather than fixed-sized tuples; and 3) the consistency of a
labelling is implicitly determined by the current assignment and
the local structure of the model and world, not by an explicit set of
permitted tuple labellings. It can be fitted into their framework by
choosing a tuple size equal to that of the largest neighborhood in
the world and extending smaller neighborhoods with arbitrary
world nodes whose labelling is unrestricted. However, this con-
struction is rather artificial since it ignores the natural structure of
such problems and is thus mainly of theoretical interest. (For
weak consistency, one must choose a tuple size equal to the
greatest predicate order.)
As was previously mentioned, if ambiguity remains after the

application of relaxation, it may be necessary to use a case
analysis. Relaxation can be usefully integrated into such an
analysis in the following way: select a world node with several
possible labels; partition these labels into several disjoint subsets
(which may be singletons); for each subset create a new assign-
ment identical to the original except that the chosen world node is
paired only with labels from the subset; and apply relaxation to
each of these new assignments. If ambiguity remains, this
procedure can be applied recursively. Using such a technique,
Mackworth [7] and Haralick and Shapiro [6] have integrated
relaxation-like methods with a backtracking or depth-first tree
search. MSYS (Barrow and Tenenbaum [3]) combines a fuzzy
relaxation method with a best-first tree search.

III. EXPERIMENTS
A computer program has been written which implements the

discrete relaxation algorithm described. There are, however,
several minor differences. The initial iteration is anomalous. Since
Ro = M x W, we can check the local consistency of pairs in Ro
"on the fly" by examining all pairs systematically, without the
need to store them. Furthermore, since on this iteration many
pairs are examined, the program uses the simpler weak consist-
ency condition. This does not invalidate any of the results proved
in the last section but is easier to test. All subsequent iterations use
the full local consistency condition. Obviously, the whole seq-
uence of assignments R1, R2, -.., R* need not be stored; only the
current version is stored. On each iteration those pairs in the
current assignment which are not locally consistent are flagged,
and at the end of each iteration these flagged pairs are deleted
from the assignment. This means that the algorithm terminates
whenever no deletions are made on a given iteration.

At first the program was tried in an ad hoc fashion on the
matching of various relational structures, some concocted by
hand, others based on the adjacencies of states in political maps.
On these the program generally performed quite well, and en-
couraged by these results we conducted the more systematic tests
described below.
The program was modified to generate random substructures of

a relational structure read as input. The following method was
used. An element of the structure is chosen at random, and used to
start a list. Then repeatedly an element on the list is chosen at
random which has neighbors not on the list; next, one of its neigh-
bors not on the list is chosen at random and placed on the list. This
continues until the list reaches some prespecified size. The list is
then used as the carrier of a relational structure which inherits
from the original relational structure all those predicates which
have as arguments only elements which appear on the list. This
process tends to generate compact substructures, embedded in a
larger relational structure, and thus corresponds to the intuitive
notion of compact objects embedded in a large visual scene. The
program then attempts to match the substructure generated as

model with the larger parent structure as world. In this case a
monomorphism certainly exists, so we can measure how often the
program finds it and how much computation the relaxation takes.
The data for the first group of tests were derived from the

political map of Africa, which has 46 countries. The map is
described in terms of the adjacencies of the countries, together
with some of the following properties:

a) whether a country is coastal or inland,
b) the number of letters in its name,
c) the first letter of its name,
d) its color on the globe (National Geographic Society, 1976),
e) the first letter of the name of its capital city.

We thus have a relational structure with one binary predicate,
adjacent (196 instances), and a large set of possible unary predi-
cates (46 instances for each of the properties a)-e)).

Tests were made using the adjacency data together with various
subsets of the properties. All tests were run on the same randomly
generated models of sizes ranging from four to 40 nodes using five
examples of each size.
The results of these tests are summarized in Tables I-V. In each

of these tables the column headed "Iterations" gives the average
number of iteration steps required for convergence (including the
final iteration which determines that the assignment has stab-
ilized). The column headed "Comparisons" gives the average
number of times (000 omitted) that it was necessary to compare
one predicate with another in the matching; thus it is an indica-
tion of the computational effort required by the relaxation
process. The column headed "Ambiguity" measures the average
number of excess pairs remaining after convergence is complete; it
is zero if there is exactly one pair for every element in the model.
All of these averages are taken over the five instances of each
model size. (The predicates used are indicated in the table cap-
tions; the adjacency relation was also used in every test.)
A second similar group of tests was run, using corresponding

data derived from the 48 contiguous states of the U.S.A. (203
instances of the binary predicate adjacency, and for each of the
properties a)-e), 48 instances of unary predicates).
A version of the program which uses weak consistency for all

iterations was also tried. The results of using this version on the
same data as used in Table I are shown in Table II.

Limitations on computer resources precluded systematic exper-
iments with larger or more varied problems. However, single tests
were run with three larger problems. Two were isomorphism
problems: to match the entire relational structure of Africa as
used for Table III against itself (46 nodes, 92 unary and 196 binary
predicate instances) and similarly for the U.S.A. structure used for
Table VIII (48 nodes, 96 unary and 203 binary predicate in-
stances). For the third problem the same structures were matched
against each other (Africa as model, U.S.A. as world). This was a
problem for which no monomorphism was expected, and as anti-
cipated, the relaxation converged quickly to the empty assign-
ment, indicating that, in fact, no such monomorphism existed.
Two other problems were isomorphism problems for relational
structures drawn from other sources. The first used the chemical
structure of #-codeine C18H2103N [14]. The atoms were repre-
sented by 43 nodes and classified by 43 unary predicate instances
as being carbon, hydrogen, oxygen, or nitrogen. The 40 single
chemical bonds were represented by 40 instances of a binaryrela-
tion. The one double bond was represented by one instance of
another binary relation, and the benzene ring was represented by
an instance of an order-six relation. The second problem was
based on the switching circuit diagram of a binary coded decimal
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TABLE I
FIRST LETTER OF NAME (AFRICA)

Mode 1
Size Iterations Comparisons Ambiguity

4 3.4 4.2 0

5 3.6 7.0 0.6

6 4.0 8.6 0.2

7 3.8 11.1 1.2

8 4.0 11.0 1.0

9 3.8 14.4 0.4

10 4.0 17.2 1.2

20 4.2 42.1 1.2

30 4.0 67.2 1.2

40 4.0 93.6 1.6

TABLE II
FIRST LETTER OF NAME-COASTAL/INLAND (AFRICA)

Model
Size Iterations Comparisons Ambiguity

4 3.4 5.2 0

5 3.4 8.1 0

6 3.4 10.3 0

7 3.4 12.7 0.4

8 3.6 13.4 0.6

9 3.4 16.9 0.2

10 3.6 18.7 0.8

20 3.4 43.0 0.4

30 3.4 68.9 0.4

40 3.8 96.0 0.8

TABLE III
FIRST LETTER OF NAME-COLOR ON GLOBE (AFRICA)

Iterations

2.6

3.0

2.8

3.0

3. 0

3.0

3.0

3.0

3.0

3.0

Comparisons Ambiguity

4.9 0.0

7.6 0.0

9.8 0.0

12.0 0.2

12.5 0.0

16.1 0.2

17.5 0.4

42.0 0.6

66.4 0.4

92.1 0.4

TABLE IV
FIRST LETTER OF NAME OF CAPITAL CITY (AFRICA)

Model
Size Iterations Comparisons Ambiguity

4 3.2 4.3 1.4

5 3.6 6.7 1.0

6 3.6 8.3 0.2

7 3.8 10.4 0.6

8 3.6 11.8 1.2

9 4.0 16.2 1.2

10 3.8 16.3 1.8

20 4.2 44.2 1.8

30 4.0 85.8 2.0

40 4.0 109.5 2.2

TABLE V
FIRST LETTER OF NAME OF CAPITAL CITY-LENGTH OF NAME (OF

COUNTRY) (AFRICA)

Model
Size Iterat-ons ComDarlsons Ambiguity

4 2.4 4.9 0

5 2.6 7.6 0.2

6 2.8 9.8 0

7 3.6 12.4 0.2

8 3.4 12.8 0.2

9 3.4 16.6 0.2

10 3.2 17.8 0.4

20 3.4 43.1 0.0

30 3.8 70.4 0.0

40 4.0 97.3 0.0

TABLE VI
FIRST LETTER OF NAME (U.S.A.)

Model

Size Iteratiorns Comparisons Ambiquity

4 4.0 4.9 0.2

5 3.4 5.8 1.0

6 4.0 7.9 0.2

7 4.2 9.3 0.2

8 3.6 12.1 0.6

9 4.0 14.0 1.4

10 3.8 14.4 1.0

20 4.0 37.0 0.6

30 4.0 60.6 0.2

40 4.0 80.2 1.2
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TABLE VII
FIRST LETrER OF NAME COASTAL/INLAND (U.S.A.)

Model
Size Iterations Comparisons Ambiguity

4 3.8 6.0 0.0

5 3.2 7.0 1.0

6 3,6 9.5 0.2

7 3.8 11.2 0.2

8 3.6 14.7 0.4

9 3.8 16.8 0.8

10 3.6 17.3 1.0

20 4.0 45.2 0.2

30 4.0 73.8 0.0

40 4.0 97.4 1.2

TABLE VIII
FIRST LETTER OF NAME-COLOR ON GLOBE (U.S.A.)

Model
Size Iterations Comparisons Ambiguity

4 2.8 5.7 0.2

5 3.2 6.8 0.0

6 3.0 9.2 0.0

7 3.2 10.6 0.0

8 3.2 14.3 0.2

9 3.0 15.9 0.0

10 3.0 16.8 0.2

20 3.0 41.9 0.4

30 3.0 68.5 0.2

40 3.0 90.3 0.0

TABLE IX
FIRST LETTER OF NAME OF CAPITAL CITY (U.S.A.)

Model
Size Iterations Comparisons Ambiguity

4 3.4 4.8 0.4

5 3.6 5.8 1.0

6 3.6 7.7 0.2

7 3.6 8.6 0.4

8 3.6 12.1 0.6

9 3.8 13.3 0.0

10 4.2 14.3 0.4

20 4.2 36.7 0.8

30 3.4 58.3 0.2

40 4.0 79.2 0.0

TABLE X
FIRST LETTER OF NAME OF CAPITAL CITY-LENGTH OF NAME (OF STATE)

(U.S.A.)

Model
Size Iterations Comparisons Ambiguity

4 2.8 5.7 0.0

5 2.8 6.7 0.0

6 3.0 9.2 0.0

7 3.0 10.5 0.0

8 3.0 14.2 0.0

9 3.0 15.8 0.0

10 3.0 16.8 0.0

20 3.0 41.5 0.0

30 3.0 67.8 0.0

40 3.0 89.5 0.0

TABLE XI
FIRST LETTER OF NAME (WEAK CONSISTENCY-AFRICA)

Model
Size Iterations Comparisons Ambiguity

4 3.4 4.1 0.0

5 3.8 6.4 0.6

6 4.0 8.2 0.2

7 4.0 10.2 1.2

8 4.0 10.4 1.0

9 4.2 13.5 0.4

10 4.4 14.9 1.2

20 5.0 35.8 1.2

30 4.4 55.5 0.8

40 4.8 77.8 1.6

(BCD) to seven-segment decoder, SN5446A [12]. The 58 nodes
were components, classified by 59 instances of various unary
predicates as input terminals, output terminals, drivers, inverters,
and gates, nor gates, or nand gates (the last three were
subclassified according to the number of inputs). Note that one
component served as both an input and output terminal. The
connections were represented by 105 instances of a binary predi-
cate indicating that the output of its first argument is connected to
an input of its second argument.
The results of these tests are shown in Table XII (using local

consistency) and in Table XIII (using weak consistency). It can be
seen from the tables that, for these problems, the results of the
relaxation usually show very little ambiguity and convergence
tends to be quite rapid (three to four iterations). What ambiguity
remained was most often due to the existence of multiple mono-
morphisms for the chosen model. (That is, the relaxation almost
always produced the theoretically best possible answers.) The ex-
periments with Africa and the U.S.A. indicate that the number of
iterations does not significantly depend on model size. The
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TABLE XII
ASSORTED STRUCTURE MATCHING PROBLEMS USING LOCAL CONSISTENCY

Property
Model World Iterations Comparisons Ambiguity

AFRICA AFRICA 3 34.3 0

U.S.A. U.S.A. 3 31 5 1

AFRICA U.S.A. 3 24*6 0

P-CODEIINE I-CODEINE 5 17.9 20

SN5446A SN5446A 5 361 3 2

TABLE XIII
ASSORTED STRUCTURE MATCHING PROBLEMS USIN(

Prop
Model World Iterations Compa

AFRICA AFRICA 3

U.S.A. U.S.A.

AFRICA U.S.A.

:-CODEINE I-CODEINE

SN5446A SN5446A 8

number of comparisons required does increas
size but only at an essentially linear rate. Rela3
consistency is a little cheaper but can produce
results (see #-codeine in Tables XII and XIII).

IV. DISCUSSION AND EXTENSIOI
The results presented here should be consi

preliminary and exploratory nature. We have s
tion performs well for matching problems sin
countered in scene analysis. While we have ma
compare relaxation with any other methods, su
be worthwhile, especially considering the em
Gaschnig [5]. He found that a Waltz-type filteri
formed more poorly than backtracking method
the N-queens problem. However, as Gaschnig
queens problem is very tightly constrained (in t]
one queen can be affected by all the other quec
The structures considered here tend to be loos
that each node is directly constrained by only <
Gaschnig was primarily interested in the effort
first solution, rather than all solutions. These c
that there may be many problems for which
preferred technique.
Some improvements could be made in the

First of all, attention should be given to the ord
cates are checked when testing for local consiste;
cates are examined first, it is more likely that a 14
will be discovered early. Second, since unary pr
local consistency only on the first iteration o
should be disregarded on all subsequent iterati
sions should be made for the special treatm
occurring types of relations. For example, each
metric binary relation (like adjacency in the
must be stored twice, once in each sense ("A is g

"B is adjacent to A"). Special handling of sy
could reduce space and processing requiremen
Beyond this, extensions can be made both

relational structures and to the applicatic

techniques. A first step is the introduction of quantitative predi-
cates, which will be treated in a subsequent paper. This extension
is crucial if our methods are to be applied to real-world scene
analysis problems.
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present program. Abstract-An analysis is made of the number of finger movements
ler in which predi- in addition operations upon the Chinese and Japanese forms of the
ncy. If rarer predi- Abacus. This shows that the additional and redundant digit represen-
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edicates can affect of beads on each rod yield no significant reduction in finger move-
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ions. Third, provi- common multiplication and division operations shows the Japanese
ent of commonly abacus with modern methods of usage to be no less efficient than the
instance of a sym- Chinese. The sociological pressures that led to the evolution of
previous section) the modern Japanese abacus have not detracted in any way from its
adjacent to B" and computational efficiency.
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