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Correspondence-
Decentralized Stabilization of Large-Scale

Dynamical Systems

M. DARWISH, H. M. SOLIMAN, AND J. FANTIN

Abstract-The problem of stabilizing large-scale linear time
invariant systems is considered. An approach is developed for
stabilization using sets of decentralized controllers, and sufficient
conditions are established in a form of algebraic criteria which can
guarantee the stability under certain structural perturbations.

I. INTRODUCTION
In classical control theory the systems under study are assumed

to have only one control agent (called a controller) who deter-
mines the control actions based on the available information of
the system. Systems of this type are called centralized systems, Li
[1].

With the development of modern technology the size and com-
plexity of the systems are increasing every day making the cen-
tralized control practically undesirable due to the cost of
transmission of information to the central controller, in addition
there might exist important delays and/or institutional constraints
in carrying out central control actions [2], [3]. Hence large-scale
systems are an essential feature of our present society.
An example of a large-scale system is a system of electric power

networks belonging to several electric power generating com-
panies connected together by tie lines where operators and dispat-
chers of each company have direct control of power generation
and regulation of frequency and voltage in their own regions, but
have no direct controls in regions belonging to different power
companies. Hence dynamic behavior in these networks is
influenced by several control agents acting partially independent
of each other [4], [5].
Another example of a large-scale system is computer communi-

cation networks, whether land based or satellite, having a message
routing between terminals where each terminal does not have
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access to information available to the other terminals. Here we
have a team decision problem of maximizing the overall system
performance [2], [6], [7].

In spite of the natural existence of large-scale systems no
common precise definition for largeness has been proposed. The
large-scale system we will adopt here is a system consisting of a
number of interdependent subsystems which serve particular
functions, share resources, and are governed by a set of inter-
related goals and constraints [8], [9].
Much of the early work done in the area of large-scale systems

is centered around the development of multilevel decomposition
and coordination methods [9], [10], [11]. Although these
techniques are conceptually simple, they require iterative solution
procedures which may lead to convergent difficulties [12], [13].
Other multilevel schemes are based on characterization of interac-
tions as perturbation signals acting in contradiction to the auton-
omy of the individual subsystems, then compensating signals that
account for the interconnection effects are used in conjunction
with locally decentralized controllers [14], [15], [16].
However, the multilevel methods can give the solution in opti-

mal manner it requires high communication cost between the
subsystems and the coordinator, besides, the stability of the
system may be lost if a fault occurred in the communication links.
Due to these difficulties decentralized control becomes vital in
the case where one can dispense some of the optimality.
By decentralized systems we mean systems having several local

control stations where at each station the controller observes only
local system outputs and controls only local inputs. All the con-
trollers are involved, however, in controlling the overall large
system. In decentralized control the problem of stability of the
overall system becomes very important, this problem has received
the attention of many authors in the last few years [1], [3], [4], [16],
[17]. Attention is given to the construction of appropriate control-
lability subspaces and canonical form in the subsystems descrip-
tions and to the derivation of necessary and sufficient conditions
for the existence of local controllers to stabilize a given system
using either static or dynamic compensators.

In this correspondence an approach for the decentralized stabi-
lization of a large-scale linear dynamical system is developed.
Sufficient conditions for decentralized stabilization in a form of
algebraic criteria are established which can guarantee the stability
under certain structural perturbations. Finally the theory
developed in this correspondence is illustrated by an example.
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II. DECENTRALIZED STABILIZATION OF LARGE-SCALE
LINEAR TIME INVARIANT SYSTEMS

Consider large-scale system S, which is described as an inter-
connection of N subsystems SI, S2, , SN and is represented by

xi= Aixi + Biui + hi(x)

Consider the isolated decoupled subsystems S°, S2, , SN in
which the interaction vectors hi(x) are assumed to be zero

(7)

each of subsystems So, So, , So described by (7) can be exponen-
tially stabilized with degree a and minimizes

N

hi(x)= fi Aijxj, i= 1, 2, .., N
j=l
j*i

(1)

where for the subsystem Si: xi E R"i is the state vector, ui E Rmi is
the control vector, hi(x) E R'i is the interaction vector from the
other subsystems to Si, and Ai E Rix"i, Bi E Ri"ixm, and Aij E Rnix
are constant matrices, and all the pairs (Ai, Bi) are assumed
controllable.

In this representation the composite system S can be described
as

ic = Ax + Bu + h (2)

(8)J = I e2at(x[Qjxj + u[I Ri ui) dt
I 0

when the control vectors are given by

uj= -R, 'BTKixi, i = 1, 2, , N (9)
where Ki is symmetric positive definite solution of matrix Riccati
equation

ATKi + KiA - Ki(BiR, 'BT)Ki + 2cxKi + Qj= 0. (10)

Then the closed loop decoupled subsystems are given by

xi = (Ai- BiR- 1BTKi)xi, i = 1, 2, , N (11)
where x = [x, 4x, . xT]T is the composite state vector, u = [u1,
U2, *, U] is the composite control vector, h = [hI, h2, , hN]
represents the interconnection pattern of the overall system S, and
h = HX,

0 A12 A13 AIN
H= A21 0 A2N

-AN1 °

H is the interconnection matrix, A = diag (Ai), B = diag (Bi),
A E RnXM and B E R"n' matrices where n = EN=jni and
m = mi equation (2) can be rewritten as

x= Ax + Bu (3)

where

[A1 A12 ... AIN
A = A + H= A21 A2 A2NI.

AN, AN2 AN

Associated with each subsystem Si a performance index Ji of the
form

Ji = I { (XTQ,xi + uTR,u,) dt
0

X iRu)d (4)

and has the property that x, ea -+ 0 as t -*oo using the control ui
of (9), the composite system (2) is described by

X = (A-BR- BTK)x+ h (12)

h = Hx

where R -1 = diag (R- 1), K = diag (Ki) and is the solution of

ATK + KA-K(BR- BT)K + Q + 2aK = 0 (13)

where Q = qiag (Qj). The presence of interconnection h will
change the stability, and it is necessary to obtain sufficient condi-
tions to guarantee the stability of the overall system S. This is
given by the following theorem.

Theorem: The original system ic = Ax + Bu can be stabilized in
a decentralized form by the control u = - R - lBTKx, if the matrix
G = [2aK + P - (KH + HTK)] is positive definite where
P = Q + KBR- lBTK.

Proof: The proof is based on Lyapunov theory. Consider the
positive definite Lyapunov function V for the overall system S as

V= XTKX (14)

taking the time derivative of (14) along (12) gives

v = XT(ATK - KBR- lBTK)x + hTKx

+ XT(KA - KBR- lBT)X + XTKh. (15)

where Qi E R"'x i is a positive semidefinite matrix, and Ri E Rm" x

is a positive definite matrix such that

N
J= E Ji

i = 1 (5)

that is, each subsystem is optimized with respect to its own perfor-
mance index (4), regardless of the behavior of the other
subsystems.
The problem is how to find decentralized controller ui of the

form

Using (12), then (15) will be

V = XT(ATK + KA - 2KBR- lBTK)x + XTHTKX + XTKHx.
(16)

Then using (13) and (16) V can be written as

V =-xT[2cxK + P - (KH + HTK)]x. (17)

For (12) to be stable, V should be negative definite, then the
matrix

ui=-Wxi, i=1,2, ,N (6)

which minimizes Ji and insures the stability of the overall system
S given by (2).
We adopt here the notions of exponential stability [3], [18], that

is, the solution of (1) should satisfy xe"t -O 0 as t -s oa, and where

cx > 0.

G = [2cxK + P - (KH + HTK)] (18)

should be positive definite. Q.E.D.
Lemma: A sufficient condition for G to be positive definite can

be given as

2ax min mi,n(Ki) + min i.min(Pi) > 2C max imax(Ki)
i i i
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where C = IiHiI norm of H, Amin( ) and ,4*) denote, respec-
tively, the minimum and the maximum eigenvalues of the argu-
ment matrix.

min A.min(Ki) and max 44.(Ki)
i i

are performed for all the N subsystems.
Proof: For G to be positive definite it is sufficient to show

that

xT[2aK + P - KH + HTK)]x

is positive definite or 2acxTKx + XTPX > 2XTKHx. Then

2dAmin(K) + Amin(P) > 211HI1Amax(K)
but

Amin(K) = min imjn(Ki)

Amin(P) = min Amin(Pi)

3.8

3.4

3.0

2.6

2.2

(19) 1.8

1.4

1.0

0.6

0.2
0.

and
).max(K) = max )max(Ki).

i

Hence a sufficient condition for G to be positive definite is

20c min A.mjn(Ki) + min Amin(Pi) > 2C max Amax(Ki). (20)
i i i

Conditions (18) or (20) guarantee the stability of the overall
system S, but it does not yield any measure on the degree of
stability.

III. CASE STUDY
To illustrate the above approach let us consider the second

order system

X1 = 5x1 - 3X2 + Ul

x2 =-4x, + 6x2 + U2. (21)

In this case we have two subsystems, each is a single order and it is
required to design decentralized controllers uI and u2 such that
the overall system is stable.
The interconnection matrix H is given by

[0 -3
H= -4 0.

Consider the decoupled subsystems

X1 =-5x + U1

X2 = 6X2 + U2

Ul =-KlXl
u2 = -K2x2

0 -23
-4 0

0.8 1.6 3.2 4.0 4.8

Fig. 1.

Hence the matrix G is given by

(4ac + O)KI + 2 +(3K1 + 4K2) 1
[+(3K, + 4K2) (4a + 12)K2+2J

Using the theorem described above, to insure the stability of the
overall system (21), the matrix G should be positive definite, that
is

y = {[(4a + 1O)K1 + 2][(4ax + 12)K2 + 2]
- (3K1 + 4K2)2} > 0.

Fig. 1 shows the variation of y with a, from which we see that the
overall system can be stabilized through the decentralized control-
lers u1 and u2 for any value of a.
Taking a = 0, then

U = -10.099x1

u2 = -12.083x2.

The overall system (21) can be rewritten as

Xc= 15 3 x+ [O 0U

(24)

(25)

XI ] U= [2]
(22) using the local controllers (24), system (25) will be

(23)

uI and u2 should stabilize the overall system and minimize the
performance index J, and J2, respectively

0

.12=1 (X12 + U dt

0J2: (X22 + U22)d

K1 and K2 are the solution of

1OK - K2 + 1 + 2oK, = 0

12K2- K2 + 1 + 2ceK2 = 0.

-5.099 - 3
x- -4 -6.083 x = Fx.

The eigenvalues of F are given by (-2.1 and - 9.1), that is, the
real parts of the eigenvalues are negative, hence the system (25) is
stable under the local controllers (24), and this satisfy the
proposed technique.
Now suppose that the interconnection term from x2 to x1 is

opened, that is,

H=[-4 0.
Then in this case the matrix F will be

[-5.099 0 1
[-4 -6.083
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y = {[(4a + 1O)K1 + 2][(4a + 12)K2 + 2] (9K1 + 12K2)2} > 0.

Fig. 2 shows the variations of y witha, from which we see that
the overall system cannot be stabilized using (23) except for values
ofa > 2.5. From the above results we see that the local controllers
guarantee the stability of the overall system under the perturba-
tions which reduce the size of the interconnection and this can be
seen from (20) in which the inequality is always satisfied for smal-
ler values of the norm of the interconnection matrix C. This aspect
is very important for practical systems, like power systems for
which some interconnection lines between the generators may be

opened during the operation of the system. In this case using local
controllers based on the proposed technique insure the stability of
the overall system [19], [20].

CONCLUSION
The problem of decentralized stabilization of large-scale dyna-

mical systems is examined in this correspondence. Sufficient con-
ditions for stabilization using decentralized controllers are
established in a form of algebraic criteria. The proposed approach
can insure in some sense the stability under structural perturba-
tion in the interconnection. It also has the advantage of eliminat-
ing the cost of communication links between the subsystems and
the coordinator as compared with multilevel methods.
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Measures of Complexity of Fault Diagnosis Tasks

WILLIAM B. ROUSE, SENIOR MEMBER, IEEE,

AND SANDRA H. ROUSE

Abstract-The literature of complexity is reviewed and the dis-
tinction between perceptualcomplexity and problemsolvingcomplex-
ity is discussed. Within the context of two particular fault diagnosis
tasks, four measures of complexity are considered. These measures

are evaluated using data from two previously reported experiments
which employed eighty-eight subjects. It is shown that two particular
measures of complexity, one based on information theory and the
other based on the number of relevant relationships within the
problem, are reasonably good predictors of human performance in
fault diagnosis tasks. The success of these measures is explained by
the fact that they incorporate the human's understanding of the
problem and specific solution strategy as well as properties of the
problem itself.

INTRODUCTION

This correspondence is concerned with how humans cope with

complexity. Perhaps complexity confronts us most when some-

thing does not work. Airline reservation systems and com-

puterized banking are quite convenient until something goes
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