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ent load components and to predict how likely it is to occur. In
the procedure developed here the unavoidable subjective estima-
tions and assumptions are made at a lower level, i.e., at the level of
load components. This permits a closer logical control on one's
forecastings about the system loading.

REFERENCES
[1] E. D. Farmer, "A method of prediction for non-stationary processes and its

application to the problem of load estimation," Trans. IFAC, 1963.
[2] W. R. Christiaanse, "Short-term load forcasting using general exponential

smoothing," IEEE Trans. Power App. Syst., vol. 90, no. 2, Mar./Apr. 1971.
[3] F. D. Galiana, E. Handschin, and A. R. Fiechter, "Identification of stochastic

electric load models from physical data," IEEE Trans. Automat. Contr., vol. 19,
no. 9, Decmber 1974.

[4] R. P. Thompson, "Weather sensitive electric demand and energy analysis on a
large geographically diverse power system-application to short-term hourly
electric demand forcasting," IEEE Trans. Power App. Syst., vol. 95, no. 1,
Jan./Feb. 1976.

[5] G. J. Berg, "Power system load representation," Proc. IEEE, vol. 120, no. 3,
Mar. 1973.

[6] M. H. Kent, W. R. Schmus, F. A. McCrackin, and L. M. Wheeler, "Dynamic
modeling of loads in stability studies," in Stability of Large Electric Power
Systems, R. T. Byerly and E. W. Kimbark, Eds., New York: IEEE Press, 1974,
pp. 139-146.

[7] R. B. Adler and C. C. Mosher, "Steady-state voltage power characteristics for
power system loads," in Stability of Large Electric Power Systems, R. T. Byerly
and E. W. Kimbark, Eds. New York: IEEE Press, 1974, pp. 147-153.

[8] E. Economakos, "Distribution system voltage studies using simulation
techniques," Proc. IEE, vol. 125, no. 2, Feb. 1978.

[9] R. Jain, "Decision making in the presence of fuzzy variables," IEEE Trans. Syst.,
Man, Cybern., vol. 6, no. 10, Oct. 1976.

[10] L. A. Zadeh, "Outline of a new approach to the analysis of complex systems and
decision processes," IEEE Trans. Syst., Man, Cybern., vol. 3, no. 1, Jan. 1973.

[11] W. H. Morgan, G. Hoyland, and M. Tuckett, "Transformer load monitoring
from consumer billing information ," IRE/ERA Conf. on Distribution, Publi-
cation no. 73.

[12] R. Juricic, "Estimation des puissances appelees a partir des consomation d'ener-
gie en basse tension," Rev. Gen. Elect., tome 80, no. 12, D&. 1971, pp. 932-934.

[13] A. Kaufmann, Introduction to the Theory of Fuzzy Subsets." New York:
Academic, 1975, vol. 1.

The combination of two sets is of particular importance in this
regard. Suppose, for example, that we wish to divide a set of
objects into "good" and "bad" subsets, these being complemen-
tary fuzzy sets. We may begin by classifying the objects on the
basis of single attributes to obtain various pairs of sets and then
combining these sets to obtain a final classification. The rule of
combination involves an element of choice; for example, if we
decide that a "good" object can have only "good" attributes, then
the final "good" set is the intersection of all the single-attribute
"good" sets and the "bad" set is the union of all sets having a
single "bad" attribute. This rule is clearly not symmetric under
complementation. Given the usual definitions of intersection and
union [1], the final decision is based entirely on the worst attribute
of each object. A more balanced approach would be to look at the
entire spectrum of attributes in such a way that a number of fairly
good attributes could balance a very bad attribute and vice versa.

II. SET COMBINATION
Let F1 D F2 represent the combination oftwo fuzzy sets F1 and

F2 under some rule, and let F' be the complement of F. If p is the
membership function for F (the argument of the function re-
presenting the object will be suppressed for simplicity), then the
membership function for F' is p' = 1 - p [1]. The requirement
that the rule of combination be independent of whether we deal
with sets or their complements is equivalent to the condition

(F1l F2)' = F'1 F'2 (1)
If the membership function P12 for the set F1 D- F2 is given by an
equation of the form P12 = C(p1, /42), then (1) is equivalent to

1 - C(PI, P2) = C(1 - P1, 1 - 2), (2)
or

C(P1, P2) + C(1 - Pl, 1 - P2) = 1.
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Abstract Some natural applications of fuzzy set theory require a
type of set combination different from those based on traditional set
theory. A class of set combination laws which are symmetric under
complementation is proposed.

I. COMPLEMENTARY SETS

Fuzzy set theory is often used in cases where it is desired to
partition a universal set into two subsets. If there is some ambigu-
ity in the partitioning criterion used, definition of the subsets as

fuzzy sets is a natural way to avoid dealing with an "excluded
middle." In such cases both sets may have comparable
significance, so that symmetry exists between the two complemen-
tary sets. This suggests that appropriate set operations should be
defined in such a way that it does not matter whether we deal with
a set or with its complement.
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The various rules of combination proposed for fuzzy sets have
recently been catalogued by Umano et al. [2], and it can be
verified that none of them always satisfy (3). In particular, we find
that

union:
l1Vp2 + (1- pI)V (1 P2) = 1, iffPI = P2

intersection:

P1 A P2 + (1 - P1)A (1 - P2) = 1, iff P1 = P2

product:

P1P2 + (1-p1)(1- P2) 1, iff p1 = P2 0 or 1

algebraic sum:

P1 + P2 - PS12 + (1P-l) + (1- P2)- -1)(1 - P2)

=1, iff p1= P2 = or 1

bounded sum:

1 A (P1 + P2) + 1 A (1 P- + 1 P2) 1,

iffp1 = P2 0 or 1.

It can also be seen that for ordinary sets (p = 0 or 1) these are

equivalent to the ordinary union (union, algebraic sum, bounded
sum) or intersection (intersection, product). Thus there exists no

rule of combination for fuzzy sets that satisfies the symmetry con-

dition represented by (1).
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III. SYMMETRIC SUMS
Although symmetric combination rules do not appear to have

been developed in the theory of fuzzy sets, it is not difficult to find
operations which satisfy the symmetry condition. Given any non-
negative function g(p1, P2) the rule of combination defined by

C(PI, P2)= g(1 P)(4)g(p1, P2) + g(1 PI, 1 P2) (4

automatically satisfies (1) and thus generates what will be called a
symmetric sum (the case of a vanishing denominator will be dis-
cussed later). Furthermore, any symmetric sum can be repre-
sented in this way since (4) is automatically true if we let g(p1,
P2) = C(PI, P2). Therefore any symmetric sum can be represented
by a generating function g(p1, P2) through (4), and every generat-
ing function defines a symmetric sum.

It is desirable to place restrictions on symmetric summation so
as to obtain practical and meaningful results. Only those generat-
ing functions will be considered which are nondecreasing func-
tions of their arguments and are symmetric under their
interchange; this latter condition insures that symmetric summa-
tion is commutative. It then follows from (3) or (4) that C(p,
1 )={.
From the original concept of symmetric summation as a rule of

combination for fuzzy sets, it is evident that if pi and P2 are both
equal to zero then P12 should also equal zero; in other words, C(O,
0) = 0, and similarly C(1, 1) = 1. Both of these conditions are
automatically met if we require that g(O, 0) = 0. However, a prob-
lem arises if g(O, 1) = g(1, 0) = 0 since in this case the value of C(0,
1) is not defined by (4). We obtain C(O, 1) = o directly from (3)
and the condition that symmetric summation be commutative,
but this means that the function C(p1, P2) is discontinuous at the
points (0, 1) and (1, 0). For example, if we use g(p1, P2)= P1p2 or
g(p1, P2) = i1 A P2 we get

lim C(P, I -i)=
-_0

lim C(p, 1) = 1
o-0

lim C(O, I - ,)= 0.

Because of this it is often us,ful to restrict the definition of symme-
tric summation to strictly fuzzy sets, namely those for which the
membership function is restricted to the open interval (0, 1). Any
function g(pl, P2) which is positive and continuous for all p,i
P2 > 0 generates a well-defined symmetric sum which is contin-
uous for strictly fuzzy sets, and in the balance of this correspon-
dence only with sums which are continuous in this restricted sense

will be considered.
Similarly, a rule of combination can best be considered associa-

tive even if it is associative only for strictly fuzzy sets. For exam-

ple, g(p1, P2) = PI P2 generates an associative sum in this sense, as

can be seen by explicit calculation, but

C(p1, C(0, 1))= C(p1, -) Pi
while

C(C(P1, 0), 1) = C(0, 1) =

so the sum is not associative on [0, 1]. It can be seen that this
breakdown of associativity always occurs for generating functions
such that g(0, p) = 0 for all p. For this reason we call a rule of
combination associative if

C(p1, C(p2, 3)) = C(C(p1, P2), P3) (5)
for Pl, P2. and p3 in the open interval (0, 1).

It should be pointed out that associativity of the generating
function is not sufficient for associativity of the symmetric sum,
even in the above restricted sense. For example, g(p1,
P2) = P1 A P2 is associative, but the corresponding rule of combin-
ation is not.
The restriction of associativity to strictly fuzzy sets means that

some aspects of the theory of symmetric summation are not
applicable to ordinary set theory. This does not represent any loss
of generality since the symmetric sum of two ordinary sets is
always a fuzzy set (except when the two sets are identical). This
follows directly from the commutativity condition, which is
sufficient to determine that C(O, 1)= :. The only real difficulty
with the restriction of the theory to strictly fuzzy sets is that the
conditions C(O, 0) = 0 and C(1, 1) = 1 discussed previously are no
longer appropriate. These can, however, be replaced by the condi-
tion that the limiting value of g as p1 and P2 approach zero is
independent of the approach path and is equal to zero, which will
be referred to as the consistency condition. This requires that q be
continuous.
To summarize, a proper generating function is defined as one

having the following properties: g(p1, P2) is a proper generating
function if

1)g(p1,p2)>0
2) g(p1, P2) iS continuous
3) g(pl, P2) = 9(p2, P')
4) lim g(pUl, Y2)= 0

PI --1 0
P2 -*0

5) g(p1, P2) is a nondecreasing function of p1 and P2 for all i ,

P2 6 (0, 1).

These conditions are sufficient to ensure that C(p 1, P2) is uniquely
defined, is continuous, and that symmetric summation is commu-
tative and obeys the consistency condition.
The definition of symmetric summation leads directly to the

result that C(1, 1)= 4, and the consistency condition ensures that
C(O, 0) = 0 and C(1, 1) = 1 (the appropriate limits can be used
when dealing with strictly fuzzy sets). These three equalities may
be considered special cases of the relationship C(p, p) = p, or
FDF = F, which in turn may be considered a necessary but not
sufficient condition for the property of stability; a symmetric sum
will be considered stable if and only if

P1 A P2 < C(P1, P2) < PI V P2

for all Pu1, P2 E (0, 1). Surprisingly, there is only one rule of com-
bination which is both stable and associative. This is C(pi,
P2) = med (P1, P2, 4), where med means the median of the three
values.

Proof: For any stable associative symmetric sum, C(pI, P2) =
if pi <4 < P2. From (3) we know that C(p, 1 - p) = 4. But stabi-
lity requires that C(p, p) = u, so

C(C(P, p), 1 -p)= C(p, C(p, 1 - ))=C(p, )=.

Thus if we pick p such that p < PtI <4 < P2 < 1 p, the require-
ment that C(Pl, P2) be a nondecreasing function of its arguments
means that

C(p, 4) < C(p1. P2) < C(4. 1 p),
SO C(p1, P2) = 4.
Next consider the case pI < P 2 < 4. Since C(p1, p1) = p1 and

C(pI, 4) = 4, it follows from the continuity of C that for any value
Of p2 e [p1, ] there exists some p e [p1, 4] such that C(p 1ip) -= p
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Thus

C(P1, J2) = C(i1, C(f1, P))
= C(C(pi, pi), P)

= C(P1, P) P2

set and its complement with which the development of the con-
cept of symmetric summation began, and note that the corre-
sponding equation for the complementary sets is

(9)
P1 2 P12-1_f \I 2f

I - Y'l2 P12 J1 - pi I - pi2

= PI Vp2-

The same result clearly applies if Y2 <p1 < , and the correspond-
ing proof for Pl, P2 > z is virtually identical.
Combining these results we see that for a continuous rule of

combination which is both stable and associative, the value of
C(p1, P2) must be o when Pt < I <P2 or P2 <.1 <P, P1 VP2
when P1, P2 < :, and Pt A P2 when P1, P2 2 1; this is equivalent to
C(p1, P2) = med (Pl, P2, D. Q.E.D.

IV. EXAMPLES
The simplest possible generating function is g = constant,

which leads to C(p1, P2) =71 for all values of P1 and P2. Although
this trivial case does not merit lengthy consideration, it is worth
noting that it represents a class of generating functions which
violate the requirement that C(0, 0) = 0 and C(1, 1) = 1.
A less trivial but still simple generating function is g(pj,

P2) = PI + P2, which leads to C(p1, P2) = (Pl + P2)/2. This func-
tion is stable but not associative. Other stable nonassociative
summation rules are generated by the min and max functions
PtA P2 and Pl v P2, which have the rules of combination

Pt Ap2

1- P- P21
and

C(Pl,92)=
V

1'+IPl - P21
In addition, the generating function g(pl, P2) = med (Pl, P2, 'I
which is equal to p, A p2 if p1 V p2 > ?, to PIl V 2 if p1 A p2 . 1,
and to: if P 1 A P2 <. <p 1 V P2, generates a unique stable and
associative rule of combination with C(P1, P2) = g(P1, P2).
A large and interesting class of summation rules arises from

factorizable generating functions, and a rule for combination will
be called factorizable if g(p1, P2) can be written in the form

g(p I, P2) = G(p1)G(p2) (6)

even though C(pl, P2) itself is not factorizable. For a factorizable
generating function we obtain from (4)

P12 C(p1, P2)
= g(p1, P2)

1 - P12 C(1 [ti, 1 - P2) g(1 - Pl, 1 - P2)

where use is made of the identity

f(1/X) = l/f(X) (10)

which is a consequence of the defining equation for f, (8). For
example, consider the class of symmetric sums defined by
f(x) = xa, where a is a positive constant, which correspond to the
generating functions g(p1, P2) = (PI P2).- If a = ' the symmetric
sum thus defined is stable but not associative, while if a = 1 the
sum is associative but not stable; this latter case arises naturally
when the sets F1 and F2 are defined by independent probabilistic
events [3]. The corresponding combination rules are

C(P, Y2)- ( )a + (Y I-P1P2)a(PU1P2) + (I1. P P2 +PlUP/2)a
(11)

or

C(P1, 42) - i-11P2
1 - P-2 + 2p1P2

(12)

if a= 1.

V. SUMMARY
The symmetric sum of two fuzzy sets has the property that the

sum of complements is the complement of the sum. This and other
reasonable conditions, such as commutativity and monotonicity,
restrict the choice of possible forms for the summation but do not
specify it uniquely.

It is also possible to define the symmetric sum to be associative,
so F10l (F2M F3) =(Fl [l F2)0 F3, or to be stable so that
F LO F = F. The properties which are appropriate in a particular
case depend on the application, but it is likely that associativity
would be required for most applications. There is only one contin-
uous symmetric sum which is both stable and associative.

Perhaps the most interesting feature of the symmetric sum is
that it is truly an operator on fuzzy sets and cannot be applied in
ordinary set theory, since the symmetric sum of two ordinary sets
is a fuzzy set (except for the sum of a set with itself). This suggests
that investigation of the properties of fuzzy sets under symmetric
summation may lead to results which do not correspond to any in
ordinary set theory.

G(p1) G(p2) _If( 1 )f( P2)2

G(1- P,) G(1 - P2) I -PI I - 2

where

f(x)=_ G(1x)+ G(1+ x
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is well-defined so long as g is a proper generating function on
strictly fuzzy sets. Thus although the rule for combination for the
membership function itself may not be factorizable, the ratio
p/(1 - p), which might be called the inclusion/exclusion ratio, is
given by a factorizable expression. The significance of this is evi-
dent if we take into consideration the symmetry between a fuzzy

REFERENCES
[1] L. A. Zadeh, "Outline of a new approach to the analysis of complex systems and

decision processes," IEEE Trans. Syst., Man, Cybern., vol. SMC-3, pp. 28-44,
Jan. 1973.

[2] M. Umano, M. Mizumoto, and K. Tanaka, "FSTDS system: A fuzzy-set manipu-
lation system," Inform. Sci., vol. 14, pp. 115-159, 1978.

[3] W. Silvert, "Prediction," to be published.

659


