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both the hardware and software can hardly be considered a
surprise. The equipment was conceived as experimental and was
built only to show feasibility. Schedules did not allow complete
testing, so that changes to the system were necessary while data
collection was in progress.
The actual reject rate experienced by the subjects ranged from

2-6 percent on a weekly basis, deteriorating as hardware and file
problems gradually ruined the references. The average online
figure including all hardware and system problems was 4.9
percent. Nonetheless, it was interesting to observe that the prevail-
ing opinion of the users was that the system worked well. There
were, after all, about 100 sessions per day with a total of one to six
rejects; thus the failures were not very frequent, fewer than 1/h.
Most of these rejects were, we emphasize, due to implementation
problems. The particular hardware problems were

a) baseline drift in the pressure channel, ruining the
correlations;

b) digital noise in the pressure channel, making the signature
appear longer;

c) lack of reset to serial number register, allowing accidental
use of prior signer's number;

d) long term changes in characteristics of the pressure channel,
probably caused by deterioration of the strain-gauge
adhesive;

e) lack of interchangeable pen cartridges and truly identical
pressure characteristics from pen to pen.

The redesign feature was needed for about 2 percent of the
subjects. It is effective but could be improved by more stringent
criteria. More than one success could be required to enroll a user,
and an additional requirement that the successes be well-
separated in time could be imposed, e.g., on different days.
The adaptation feature was designed to cope with slow changes

in the hardware, drift, and temporary confusion over styles. We
did not expect that some users would continually vary between
two different signature styles. This could be guarded against ad-
ministratively by issuing signature cards with an embossed refer-
ence signature. As it happened, only 3/248 users vacillated in this
way, so the problem was not widespread. Use of the adaptation
feature carelessly or during intervals of subtle hardware malfunc-
tion can destroy the reference file and degrade the performance, as
we have seen.

In summary, our dynamic signature verification is capable of
high performance in a realistic application. The performance
shown during this test was superior to the published data on other
techniques such as speaker identification and fingerprint scanning
and comparable to the reject rates involving memorized code
numbers (PIN's) which are far less secure. The signature
technique is robust and general, but because of the relative ease of
forging some signatures and the substantial human factors in-
volved in establishing proper reference patterns, the system must
be designed with care. Even higher performance levels are
possible, but require that the signers be motivated to a greater
extent than achieved in this experiment.
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APPENDIX
If the two orthogonal acceleration channels are labeled x and y

and the sample and reference signals are

s(t) = <s,(t), sy(t), sP(t)>
r(t)= <r,(t), ry(t), rp(t)>.

Then for the ith segment, the correlations are defined as

max Z [s'(t) + js'(t)][r4(t + T) -jr(t( + z)]
ri_ r tJ_ 2

{[sX(t)]2 + [Si (t)]2} Z {[rX(t)]2 +.(t)]2
t t

and
max , [s,(t)][r'(t + T)]

p ~~~~~~1/2
Cp_ E(t)]2 2[W

Let ni be the corresponding segment lengths of the reference
signature. We define a verification measure V as

V= E (ni/E ni C

where
C = [C' + Cp]12.
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Abstract A standard approach to threshold selection for image
segmentation is based on locating valleys in the image's gray-level
histogram. Several methods have been proposed that produce a

transformed histogram in which the valley is deeper, or is converted
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CORRESPONDENCE

into a peak, and is thus easier to detect. Tbe transformed histograms
used in these methods can all be obtained by creating (gray level, edge
value) scatter plots, and computing various weighted projections of
these plots on the gray-level axis. Using this unified approach makes
it easier to understand how the methods work and to predict wben a
particular method is likely to be effective. The methods are applied to
a set of examples involving both real and synthetic images, and the
characteristics of the resulting transformed histograms are
discussed.

I. INTRODUCTION
Many types of images contain dark objects on a light back-

ground, or vice versa-for example, printed characters on paper,
chromosomes on a microscope slide, or clouds above the sea
surface. Such images can be segmented into objects and back-
ground by thresholding-i.e., by assigning each image pixel to one
of two classes, light and dark, according to whether its gray level is
lighter or darker than a specified threshold t. For a discussion of
thresholding see [1].

Thresholding is a special case of pattern classification in which
a one-dimensional feature space is used, the feature being the gray
level of the pixel. The threshold is a "hyper-plane" decision surface
(i.e., a point) in this one-dimensional space. Ifwe knew the distrib-
ution of gray levels in the given ensemble of images-e.g., if we
knew that the gray levels were a mixture of two Gaussian popula-
tions with given means and standard deviations-then we could
determine analytically the threshold that minimizes the
classification error. In the absence of such knowledge, we can
approach the problem of threshold selection by performing
cluster analysis on the feature space. Suppose that we construct
the gray-level histogram of the image (or ensemble); this is a plot
showing how often each gray level occurs. A cluster of feature
values is then nothing more than a peak on the histogram, corre-
sponding to a densely populated range of gray levels. If we find
two peaks on the histogram, it is reasonable to choose a threshold
that separates these peaks, e.g., at the bottom of the valley be-
tween them, since this threshold appears to separate the gray-level
population into two distinctive subpopulations. Similarly, if there
are three or more peaks, we can segment the image using two or
more thresholds at the intervening valley bottoms. This method of
threshold selection was first described in [2].

Several methods have been proposed that produce a trans-
formed gray-level histogram in which the valley is deeper, or is
converted into a peak, and is thus easier to detect. The trans-
formed histograms used in these methods can all be obtained by
creating a (gray level, edge value) scatter plot for the given image
(ensemble) and computing various weighted projections of this
plot onto the gray-level axis. Using this unified approach makes
it easier to understand how the methods work and to predict
when a particular method is likely to be effective.

In Section II of this correspondence, we define the class of
images to which these methods should be applicable. Section III
describes the methods of producing transformed histograms, and
Section IV shows how these methods all reduce to constructing
weighted projections of (gray level, edge value) scatter plots. In
Section V and VI, the methods are applied to a set of examples
involving both real and synthetic images, and the characteristics
of the resulting transformed histograms are discussed.

II. THE UNDERLYING IMAGE MODEL

We shall assume that the given images consist of objects on a

background, where the objects and background each have a uni-
modal gray-level population. We further assume that the gray
levels of adjacent points interior to the objects, or to the back-

A

(a) (b)

of
(c) (d)

Fig. 1. Test images: (a) chromosomes, (b) cloud cover, (c) handwriting, (d) tank.

(a) (b) (c) (d)
Fig. 2. Histograms of images in Fig. 1.

ground, are highly correlated, while across the edges at which
objects and background meet, adjacent points differ significantly
in gray leveL

If an image satisfies these assumptions, its gray-level histogram
will be primarily a mixture of two unimodal histograms corre-

sponding to the object and background populations, respectively.
If the means of these populations are sufficiently far apart, their
standard deviations are sufficiently smalL and they are compar-
able in size, the image histogram will be bimodal. Otherwise, the
histogram may be unimodaL but one side of the peak may display
a shoulder or slope change, or one side may be less steep than the
other, reflecting the presence of two peaks that are close together
or that differ greatly in height. The histogram will also contain a

third, usually smaller, population corresponding to points on the
object/background border (since this is not perfectly sharp, in
general) These points have gray levels intermediate between those
of the object and background; their presence raises the level of the
valley floor between the two peaks, or if the peaks are already
close together, makes it harder to detect the fact that they are not
a single peak.
Four images that appear to satisfy these assumptions are shown

in Fig. 1. Part (a) of this figure is a photomicrograph of some

chromosomes; part (b) is a television image ofcloud cover as seen

by a meteorological satelLite; part (c) is a signature on a bank
check; and part (d) is an infrared image of a tank against a terrain
background. The histograms of these four images are shown in
Fig. 2. (In the case of part (b), the image contained only even-

numbered gray levels, so that the histogram bars are spread
apart.)

III. METHODS OF PRODUCING TRANSFORMED HISTOGRAMS
If the histogram peaks are close together or very unequal in

size, it may be difficult to detect the valley between them. This
section describes several methods of producing a transformed
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histogram in which the valley is deeper, or is converted into a
peak, and is thus easier to detect. In determining how each point
of the image should contribute to the transformed histogram,
these methods take into account the rate of change of gray level at
the point, as well as the point's gray level. For brevity, we shall
refer to rate of change of gray level as "edge value."

In the experiments described in this correspondence, five differ-
ent edge-value operators were used. These operators are defined
as follows, for the pixel E whose neighborhood is

A B C
D E F G
H I J K

L M

1) LAP, the "Laplacian":

A+B+C+D+F+H+I+J
8

2) ROB, the "Roberts cross":

max [jE - Cl,VB - FI],
3) DIFI, the max of differences of average gray levels in pairs of

horizontally and vertically adjacent 2-by-2 neighborhoods:

xmax [B+C+E+F-I -J -L-M,

ID + E + H + I-F-G- J-K],

4) DIF2, analogous to DIFI but using pairs of 4-by-4
neighborhoods,

5) DIF3, analogous but using 8-by-8 neighborhoods.

A. Histogram of Points Having Low Edge Values

According to the image model described in Section II, points
interior to the objects and background should generally have low
edge values, since they are highly correlated with their neighbors,
while those on the object/background border should have high
edge values. Thus if we produce a histogram of the gray levels of
points having low edge values only, the peaks should remain es-
sentially the same, since they correspond to interior points, but
the valley should become deeper, since the intermediate-gray-level
points on the object/background border have been eliminated.
(See Panda and Rosenfeld [3].)
More generally, we can compute a weighted histogram in which

points having low edge values are counted heavily, while points
having high edge values are counted less heavily. For example, if
IA is the edge value at a given point, one could give that point
weight 1/(1 + IA 12) in the histogram; this gives full weight (1) to
points having zero edge value and negligible weight to high edge
value points. This method was proposed by Mason et al. [4] and
has also been investigated by Weszka and Rosenfeld [5].

B. Histogram of Points Having High Edge Values

Conversely, suppose that we produce a histogram of the gray
levels of only those points that have high edge values. If edge
values are high at the object/background border and low else-
where, the resulting histogram should have a single peak at a

value intermediate between the object and background gray
levels. Thus the mode of this histogram, or perhaps its mean,
should be a good threshold. This method was first suggested by
Katz [6] and has also been studied by Weszka and Rosenfeld [7].
An alternative possibility arises if we use the absolute-value

Laplacian operator
a2f a2f
+X2 ay

or its finite-difference analog

A2 t+2AX f + Ay ~f
to define "edge value." Since these are second-derivative opera-
tors, they have value zero on a linear ramp, but high values on the
shoulders at the top and bottom of a ramp. Thus if the
object/background borders are ramplike, the points having high
Laplacian values will be adjacent to, but not on, these borders.
The histogram of high Laplacian-value points should thus have
two peaks, representing object and background gray levels, but
the valley between these peaks should be quite deep, since the
Laplacian has low values at the intermediate-gray-level points
that lie on the borders. Moreover, the peaks should be relatively
equal in size, since the border zones in the objects and the back-
ground should have comparable areas, even if the objects and
background themselves have very different areas. This method
was introduced by Weszka et al. [8].
More generally, we can compute a weighted histogram in which

points having high edge values are counted more heavily than
those having low edge values. For example, we can give each point
its edge value A as a weight, so that zero edge value points are
not counted at all, while high edge value points are counted
heavily. This method, which was proposed by Watanabe [9], is
equivalent to summing the edge values for each gray level. If the
edge values at the object/background borders are very high, the
resulting histogram will have a peak at a gray level intermediate
between those of object and background, and this peak can be
used as a threshold. However, a possible difficulty with this
method is that if the areas of the objects and background are
large, the sum of the large numbers of low edge values in their
interiors may be higher than the sum of the smaller number of
high edge values at the borders, and the peak may not exist. To
avoid this objection, Weszka et al. [10] proposed using the aver-
age, rather than the sum, of the edge values for each gray level;
this average should certainly be higher for the border gray levels
than it is for the interior gray levels.

IV. (GRAY LEVEL, EDGE VALUE) SCATTER PLOTS
Scatter plots of gray level versus edge value for the images of

Fig. 1 are shown in Fig. 3. In these plots, the origin is in the upper
left corner; gray level increases to the right, and edge value in-
creases downward.' The darkness of a point on these plots is
proportional to the log of the number of times that the corre-
sponding pair of (gray level, edge value) values occurs; log scaling
was used to make faint clusters more easily visible.

All of the transformed histograms described in Section III can
be obtained by constructing a two-dimensional scatter plot of
gray level versus edge value for the given image (or ensemble) and
computing various weighted projections of this plot onto the
gray-level axis. In pattern classification terms, this can be thought
of as first plotting the image pixels in a two-dimensional feature
space and then transforming the space back to one dimension to
obtain the new histogram.2

Specifically, when we produce a histogram of the gray levels of
the low edge value points only, we are in effect applying a steplike
weighting function to the scatter plot, giving weight 1 to low edge
values and weight 0 to high edge values. In the method of Mason

lFor technical reasons, it was not possible to onent the histograms (Figs. 2, 4 8.
10, 12-16) consistently with the scatter diagrams (Figs. 3, 11); in the former, gray
level increases downward.

2 Some other methods of using the (gray level, edge value) feature space to classify
pixels (and thus to segment the image) are described in [31. Watanabe (personal
communication) has also used scatter plots of gray level versus cumulative edge
value for image segmentation.
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LAP ROR DIF1 DIF2 DIF3

a)

b)

c)

d)

Fig. 3. Scatter plots of gray level versus edge value for images of Fig. 1, using
edge-value operators LAP, ROB, DIF1, DIF2, and DIF3 (see text)

et al., we are applying the weighting function 1/(1 + IA I2), where
I A is the edge value. In Katz's method, we are again using a step
function, but with high edge values having weight 1 and low
values weight 0; similarly for the method of Weszka et al., but
using the Laplacian as an edge value. Finally, in Watanabe's
method we are using IA I as a weighting function; while in the
modification of this method by Weszka et al., we are pointwise
dividing Watanabe's weighted histogram by the original un-
weighted histogram.
We can understand more readily how the methods of Section

III work, and when they are likely to be effective, by considering
what the (gray leveL edge value) scatter plot can be expected to
look like for images that satisfy the assumptions made in Section
II. On such a plot, there should be two large clusters of points
near the gray-level axis, representing pixels interior to the objects
and background, which should have low edge values. The shapes
of these clusters will depend on the degree to which the interior
points are correlated. If the correlation is very high or if the edge
operator is not too sensitive to noise, these clusters should be
compact and should lie close to the gray-level axis. On the other
hand, if the correlation is lower or the edge operator is noise-
sensitive (the Laplacian, for example), we can expect the clusters
to extend farther from the axis at the ends of the (object or back-
ground) gray-level range, since these gray levels will be rarer and
so are more likely to be associated with high edge values.

There should also be points on the plot corresponding to
object/background border points, but the location of these points
depends on the sharpness of the borders and on the nature of the
operator used to define edge value. For example, if the borders are
ramp,ike and a first-derivative edge operator such as the gradient
magnitude is used, there should be a cluster of border points
joining the object and background clusters. This border cluster
should extend away from the gray-level axis by an amount that
depends on the maximum steepness of the borders. If a Laplacian
operator is used, the border points should not give rise to
intermediate-level points that extend away from the axis.3

3 This description assumes that the objects and background have relatively large
interiors, and do not consist primarily of border points. For the signature image (Fig
I(c)) this is not the case; the object points are virtually all border points. The images
of Fig. I will be discussed further in the next section.

V. EXAMPLES

(Gray level, edge value) scatter plots for the images of Fig. 1
were shown in Fig. 3. We can make the following comments on
these scatter plots.

a) In the chromosome image, the objects and background are
quite smooth, so that the object and background clusters are close
to the gray-level axis. In addition, the border ramps are shallow;
thus the edge operators having small sets ofsupport (ROB, DIFI)
do not give rise to points far from the gray-level axis. This is true
even for the Laplacian operator, since the chromosome image is
highly correlated and noise-free. For the larger operators, on the
other hand, the maximum edge value approaches the contrast
between the objects and the background and is much farther from
the axis.

b) In the cloud image, the objects and background are noisy, so
that the scatter plots are spread far from the gray-level axis when
small-support edge operators that respond to the noise are used,
but they are concentrated closer to the axis when larger operators
are used. For the Laplacian operator, there is a slight tendency for
the rarer gray levels to yield higher Laplacian values.

c) In the signature image, as mentioned earlier, virtually all the
object points are border points. Thus for the small-support edge
operators, the "object" cluster is far from the gray-level axis, and
the background cluster also extends far from the axis due to the
high contrast between objects and background. For the larger
operators, on the other hand, the object/background contrast
decreases, since the neighborhoods used in these operators can
never be contained inside the objects; thus the clusters move
closer to the axis as the operator size increases. The tendency for
rarer gray levels to have higher edge values is noticeable for the
small operators in the background cluster and strongly present in
the object cluster.

d) The scatter plots for the tank image generally resemble those
of the chromosome image, allowing for the fact that the tank
image has lower contrast and is somewhat noisier. In particular,
the rare gray leveVhigh edge value trend is quite noticeable for the
Laplacian operator.
Based on these descriptions of the scatter plots, we can judge

how the methods of Section III might be expected to work for the
four images.
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Fig 4. Histograms of gray levels of zero edge value points for four images.
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Fig 5. Histograms for four images in which points having low edge values are

given higher weights.

1) The results using Panda's method, histograms of the points
having edge value zero only, are shown in Fig. 4. As expected, for
the chromosome and tank images, the valley deepening effect is
greatest for the operators having large sets of support, while the
reverse is true for the cloud image. The method fails for the signa-
ture image, where the objects contain almost no zero edge value
points, since they have no interiors. It also fails for the Laplacian
operator in all cases, since the intermediate gray levels are not
expected to have high Laplacian values, so that restricting the
histogram to low Laplacian values is not expected to have a

valley-deepening effect. Analogous remarks apply to Mason's
method, as seen in Fig. 5.

2) Results using Katz's method here are shown in Fig. 6, with
high edge values defined using four different percentiles: 80, 85, 90,
and 95 percent. (For some of these, no histograms are shown
because the percentile was reached for zero edge value, so that the
method yielded the same result as Panda's.) As expected, for the

chromosome and tank images, unimodal histograms are usually
obtained, especially for the higher percentiles. The cloud image
also tends to yield unimodal histograms, but the position of
the mode is less reliable, owing to the high variability of the edge
values for this image. The signature image does not yield unimo-
dal histograms, which is also as expected, since its border point
population contains its object point population.

3) The method of Weszka et aL (see Fig. 7) based on points
having high Laplacian values, does produce a slight valley deepen-
ing for the chromosome image, but its effect is small since this
image has almost no points with high Laplacian values. For the
other three images, the method gives rise to a pair of relatively
equal peaks, particularly for the highest percentiles. However, in-
spection of the scatter plots suggests that these peaks correspond
to the high Laplacian values at rare (= high or low) gray levels,
rather than representing high Laplacian values adjacent to
object/background borders. The method produces histograms

a)

b)

c)

d)

LAP

--I

a)

b)

c)i

d):
* : "

059.
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Fig. 6. Histograms of gray levels of high edge value points (percentiles 80, 95, 90, 95) for four images using four gradient operators.

whose valleys yield reasonable thresholds, but this may simply be
because any threshold intermediate between the high and low
gray levels would be reasonable for these images.

4) Watanabe's method fails for all four images, for both the
gradient and Laplacian operators, as shown in Fig. 8. As pointed
out in Section III, the background points continue to dominate
the histogram, since there are so many more of them, even though
the border points have higher edge values. Weszka's modification
of this method, for the gradient operators, is more successful ifwe
ignore the high values at the ends of the gray-level range (which
result from dividing by very low values on the original histogram).

VI. SYNTHETIC EXAMPLES

In order to further study the dependence of the scatter plots on
the statistics of the image regions, a set of synthetic images was

generated. Each of these images, shown in Fig. 9, contains a

square "object" region (amounting to about 10 percent of its area)
having mean gray level 40 (on a 0-63 gray scale) and a back-
ground region having mean gray level 20. The gray levels of the
object and background have approximately Gaussian distribu-
tions (truncated at 0 and 63) with standard deviation 7 in the
object regions, and 3 (Figs. 9(a), (d), (g)), 5 (Figs. 9(b), (e), (h)), or 7
(Figs. 9(c), (f), (i)) in the background region. In Fig. 9(a)-(c), the
gray levels of neighboring points are uncorrelated. The remaining
parts of Fig. 9 were obtained by starting with uncorrelated gray

levels and introducing correlation by local averaging, using neigh-
borhood sizes 2 x 2 (Fig. 9(d)(f)) and 4 x 4 (Fig. 9(g)-(i)), re-

spectively. (To compensate for the fact that averaging reduces the
standard deviation, larger standard deviations (6, 10, 14, 12, 20,
28) were used in the initial uncorrelated images; a larger gray-

level range was used to accommodate Gaussian distributions with
these large c's.]

ROB

80% 85%

L
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Fig. 7. Histograms of gray vels of high Laplacian-value points (percentiles 80, 85,
90, 95) for four images.

ROB DIF1 DIF2 DIF3

Fig. 8. Histograms for four images in which points having high edge values are given higher weights, and results of dividing these histogram
pointwise by unweighted histograms.
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(a) (b)

(d)

(c)

(e) (f)

.wa~ *
.,..ka

. -t X }#

(g) (h) .(i)
Fig. 9. Synthetic images: mean gray lvels 20 (background) and 40 (object} Standard deviation of object gray leved 7; of bckground gray

levels 3 (parts (a) (d) (g)) 5 (parts (b), (e) (h), or 7 (parts (cl (f) (i)} In prs (aHc1 no local averaging was done; in parts (d)-(f)
and (g)-(i) local averaging was performed using 2 x 2 and 4 x 4 neighborhoods, respectively.

( (b ( -
(a) (b) (c)

_ _L
(d) (e) (f)

(g) (h) (i)
Fig. 10. Gray-level histograms for nine images in Fig. 9.
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LAP ROB DIF1 DIF2 DIF3

a)

b)

c)

d)

e)

f)

g)

h)

i)

Fig. 11. (Gray level, edge value) scatter plots for nine images, using edge operators
LAP, ROB, DIFI, DIF2, DIF3.

Gray-level histograms for the images in Fig. 9 are shown in Fig.
10, and scatter plots, using the same four edge operators as for the
real images, are shown in Fig. 11. The histograms are similar for
all four degrees of correlation, as expected, but the scatter plots
differ appreciably. For low correlations and small edge operators,
the tendency for rare gray levels to have high edge values is
evident; this is very strong in the case of the Laplacian. Lower
standard deviations, or edge operators involving much averaging,
yield clusters that lie closer to the gray-level axis. The scatter plots
for high correlation resemble those for the tank image.

When the Laplacian operator is used, the Panda method (Fig.
12) works for low-correlation images only; for the gradient opera-
tors, it works best for the high-correlation images using large edge
operators, just as it did for the tank image. Similar remarks apply
to the Mason method (Fig. 13).

Katz's method yields unimodal histograms, especially for the
high-correlation images (Fig. 14). Weszka's method yields multi-
modal histograms (Fig. 15), but the peaks correspond to high
Laplacian values at rare gray levels, as in Section V.
Watanabe's method does not yield useful central peaks for any
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Fig. 12. Histograms of gray levels of zero edge value points for nine images.

of the operators. Weszka's modification does yield such peaks for
the Laplacian operators and tends to do so for the gradient opera-
tors, particularly for the lower background standard deviations
(Fig. 16).

VII. CONCLUDING REMARKS
The structure of the (gray level, edge value) scatter plots is

influenced by several factors, including the smoothness of the

image and the correlation of neighboring gray levels. Thus general
criteria for predicting the degree to which a given method can be
expected to work are not simple to formulate. However, as we
have seen, examination of the scatter plot makes it easy to deter-
mine which methods will work for a given class of images. These
scatter plots thus appear to be a useful tool for image analysis.
Quantitative modeling of their structure (e.g., in terms of mixtures
of two-dimensional distributions) would be desirable as a further
aid to analyzing threshold selection techniques.
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Fig. 13. Histograms for nine images in which points having low edge values are
given higher weights.
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Fig. 15. Histograms ofgray leveh ofhigh Laplacian value points (percentiles 80, 85,
90, 95) for nine images
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Fig. 16. Histograms for nine images in which points having high edge values are given higher weights, and results of dividing these histograms
pointwise by unweighted histograms.
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