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utility case and have been applied to a general optimal diagnostic
problem.

With regard to the diagnostic example, it is apparent that, in
general, an extremely rich set of diagnostic questions and tests
must be available in order to insure the existence of an admissible
myopic strategy. (Conditions for the existence of admissible
myopic strategies for a special case of the optimal diagnostic prob-
lem are presented in [7].) Diagnostic strategies that achieve the
supremum in sup, F,(x, a), however, often represent good subop-
timal strategies, the computational impact of which are typically
quite significant. We note this significance by remarking that
determining the best myopic strategy (be it optimal or subopti-
mal) requires, in a decision tree description, only a single decision
node. After an action has been selected and the diagnostic test
outcome received, then the a posteriori over the state space is
calculated and entered as the a priori into the same single decision
node tree to determine the diagnostic decision for the next stage.
Such a process can proceed for as many stages as is desired. The
standard tree-folding-back procedure, together with its concomi-
tant combinatorial problems (the “curse of dimensionality”), is
thus avoided.

The above-mentioned computational implications make the
use of myopic strategies as suboptimal strategies particularly
attractive. Tight bounds on the difference between optimal ex-
pected utility within the class of all admissible strategies and opti-
mal expected utility within the class of all admissible myopic
strategies are not yet available, however, and are a topic of future
research.

REFERENCES

[1] D. P. Bertsckas, Dynamic Programming and Stochastic Control. New York:
Academic, 1976.

[2] Y. M. L. Dirickx and L. P. Jennergren, “On the optimality of myopic policies in
sequential decision problems,” Management Sci., vol. 21, pp. 550-556, 1975.

[3] E. Ignall and A. F. Veinott, “Optimality of myopic inventory policies for several
substitute products,” Management Sci., vol. 15, pp. 284-304, 1969.

[4] J. Mossin, “Optimal multiperiod portfolio policies,” J. Business, vol. 41, pp.
215-229, 1968.

[5] H. Raiffa, Decision Analysis. Reading, MA: Addison-Wesley, 1968.

[6] R. D. Smallwood and E. J. Sondik, “The optimal control of partially observable
Markov processes over a finite horizon,” Operations Res., vol. 11, pp. 1071-1088,
1973.

[7] C. C. White, “Optimal diagnostic questionnaires which allow less than truthful
responses,” Information and Control, vol. 32, pp. 61-74, 1976.

Noise Cleaning by Iterated Local Averaging
L. S. DAVIS anp AZRIEL ROSENFELD, FELLOW, IEEE

Abstract—A class of iterative enhancement techniques based on
the neighbors of a point whose gray levels are closest to that of the
point is introduced. Several such techniques are compared as to their
effects on image point classification, and results of applying them to a
real image are also presented.

Manuscript received June 30, 1977; revised May 10, 1978. This work was sup-
ported by the National Science Foundation under Grant MCS-76-23763.

L. S. Davis was with the Computer Science Center, University of Maryland, Col-
lege Park, MD 20742. He is now with the Department of Computer Science, Univer-
sity of Texas, Austin TX 78712.

A. Rosenfeld is with the Computer Science Center, University of Maryland, Col-
lege Park, MD 20742.

705

I. ITERATIVE TECHNIQUES FOR IMAGE ENHANCEMENT

This paper introduces a class of iterative image enhancement
techniques based on the neighbors of a point whose gray levels are
closest to that of the point. We will assume that images are
composed of compact regions of essentially constant gray level on
a similarly constituted background, i.e., that underlying the ob-
served image is an ideal image consisting of regions of constant
gray level (objects on a background), but that the observed image
has been degraded by the addition of white noise.

Section II introduces a class of image enhancement procedures
based on the k neighbors of a point whose gray levels are closest
to that of the point. Section III gives a more adaptive technique
based on the distribution of gray levels and gradients in the neigh-
borhood of a point. Section IV discusses the effects of iterating
these enhancement procedures (providing, in essence, a set of re-
laxation networks for image enhancement), and Section V con-
tains a typical example of the application of the techniques to
real-world images. Section VI presents our conclusions and con-
tains suggestions for further research.

It would have been desirable to compare the results obtained in
this paper with results obtained using other image smoothing
methods [2]-[5]. However, this was impractical for two reasons:
limitations on the size of the paper and the effort required to
implement many of the other methods. In spite of the absence of
comparative data, we feel that the present results are worth re-
porting because they have very low computational cost and yet
yield substantial smoothing in a variety of cases.

II. THE k-NEAREST NEIGHBOR METHOD

The classical technique for enhancing images is to smooth the
image on some fixed size neighborhood [1]. If the gray levels of the
image are uncorrelated, then the smoothing is unweighted; if they
are correlated and the correlations are known (or can be
estimated), then an optimal set of weights can be computed to, for
example, minimize the mean-square error between the smooth
image and the ideal unobserved image underlying the original
noisy image [2]. In the discussion that follows, we will assume that
the gray levels are uncorrelated.

If our goal is to retrieve the ideal image by thresholding the
observed noisy image, then we can point out that while un-
weighted smoothing will increase the accuracy of the thresholding
procedure at interior points of the image, it will lead to incorrect
results at edge points and line points (see [3] for a more exact
probabilistic model of the smoothing process). Intuitively, if the
objects in the image are small relative to the smoothing neighbor-
hood or if the objects are not very compact, smoothing may ac-
tually lower the overall classification accuracy (into object and
background) of the thresholding process. We will limit our con-
sideration to smoothing neighborhoods sufficiently small so that
the first problem can be ignored and concentrate our attention on
dealing with the second problem.

Ideally, we would like to perform unweighted smoothing at all
interior points for which the entire smoothing neighborhood con-
tains points all drawn from the same region as the center point. At
edges and lines, we would prefer to smooth only over points on,
e.g, the same side of the edge as the center point or along the
linear feature passing through the center point. Techniques have
been proposed [4] that, on the basis of the responses of a family of
edge or line detection operations, attempt to determine a reason-
able set of weights for smoothing a point. These techniques re-
quire a considerable expenditure of computational effort so it is of
interest to investigate simpler but similarly motivated techniques
in order to gain an understanding of the trade-off in computation
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and enhancement power. Consider then the following very simple
enhancement strategy.

E*: Replace the gray level at a point P by the average gray level
of the k neighbors of P whose gray levels are closest to that of P
(inann x nneighborhood of P). (We will refer to these neighbors
from now on as the k-nearest neighbors of P.)

For all points P such that exactly k of their n? neighbors belong
to the same population as P, strategy E* will be optimal. Averag-
ing with fewer neighbors will lead to an averaged population with
a larger variance (hence with higher errors upon thresholding),
and averaging with more neighbors will cause the mean of the
averaged population to shift towards the other population (we
assume throughout that thresholding will be done at the mini-
mum error threshold for the unenhanced noisy image).

Suppose we consider 3 x 3 neighborhoods; then we can (in-
completely) characterize interior points as points all eight of
whose neighbors belong to the same population as the center
point, edge points as points where between three and seven neigh-
bors belong to the same population as the center point, and line
points as points where only one or two neighbors belong to the
same population as the center point. (The characterization is in-
complete because it does not take into account the spatial distri-
bution of the gray levels in the neighborhood of a point.) If one
wanted to insure that lines were preserved, one would have to use
E* with k < 2. However, this turns out to have very little noise
cleaning power [4]. In later sections, we will describe experiments

with E* for larger values of k. An error analysis of E* is presented
in [5, Sec. 1A]

III. A GRADIENT-BASED METHOD

The choice of any particular E* entails trade-offs in sensitivity
to the various local pictorial features. As mentioned earlier, an
ideal operator would first make its best estimate of the nature of
the neighborhood at each point and then compute some best set
of smoothing coefficients for that neighborhood (as was done in
[4]). A simpler but still powerful adaptive enhancement procedure
follows.

1) At each point, decide if that point is an interior point or not
(i.e., assign the point x some fuzzy membership m(x)in the set I of
interior points and then compare these membership values to
some threshold).

2) Ifitis an interior point, simply replace it by the average of its
neighborhood.

3) If it is not an interior point, replace it by the weighted aver-
age of its neighbors that have higher membership in the set of
interior points than it does.

It is important to use a weighted average because large neigh-
borhoods will often contain interior points (ie., low gradient
points) from more than one region. The weights represent the
confidence that the pair of points come from the same region. It is
therefore reasonable to make the weights proportional to the
absolute differences in gray level between a point and its neigh-
bors. Note that we would not expect to obtain very different
enhancements from weighted versus unweighted gradient filtering
over a3 x 3 neighborhood. However, once the neighborhood gets
larger, we would expect different results.

To understand this method, consider the neighborhood of x

a b ¢
d x e
f g h

Suppose that a vertical edge passes through x so that a, d, and f
are in one region, and b, x, g, ¢, e, h are in a second region. If we
compute membership in I based on the “Laplacian”
|x — (b +d + e + g)/4], then if the regions are of constant gray
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level, we have my(a) = m;(d) = m;(f) = my(b) = mi(g) = my(x),
but m(x) < my(c) = my(e) = m(h) so that our replacement
strategy will replace x by (c + e + h)/3. We can make the follow-
ing observations about this enhancement strategy, which we will
call Laplacian smoothing since edge points are replaced by the
average of their neighbors with lower Laplacian values (i.., higher
m; values).

1) Isolated noise points will be smoothed over, because all of
the neighbors of a noise point (which has low m,) will have higher
my values (lower Laplacians) than the noise point.

2) Linear features will be smoothed over because points adja-
cent to the linear feature points will have higher membership in I
than the linear feature points.

3) Ideal (vertical or horizontal) step edges will be unchanged as

in the example in the previous paragraph.
Analogous remarks can be made (the details will be omitted here)
if we compute m, based on the value of a suitably chosen gradient
operator rather than the Laplacian; we call this method gradient
smoothing.

IV. ITERATED ENHANCEMENT

A. Advantages of Iteration

As discussed in [4], better enhancements could be achieved by
applying the enhancement operator to a large neighborhood of a
point than would be achieved on the basis of a smaller neighbor-
hood. However, the amount of computation required can be pro-
hibitively greater for larger neighborhoods. As an alternative, we
can consider iterating the enhancement procedure over a small
neighborhood in an effort to bring more pictorial context to bear
on the enhancement of individual points. The computational sav-
ings achieved by iteration can be significant. For example, sup-
pose that we wanted to perform k-nearest neighbor enhancement
over an n x n neighborhood. An efficient strategy for accomplish-
ing this would be to store the gray levels in an n x n neighbor-
hood of a point in a binary tree such that visiting the nodes of the
tree in preorder would result in listing the gray levels of the neigh-
borhood in ascending order. Given the binary tree, the k-nearest
neighbors of a gray level x can be computed in O(n?) time—we
simply start one process at the kth element in the preorder listing
(bi) and one at the first element (b,) and find the first i such that
max (|x — b;|, |x—=bisx-1|)<min (|x —bi—y|, |x—bisr])
where by = — o0, b,2.1 = + 0.

Given the binary tree for the n x n neighborhood of a point (i,
j), the binary tree for its horizontal neighbor can be efficiently
computed by deleting the n elements in column 4;_,/, and adding
the n elements in column A;,,,. This would require altogether
O(n log n) operations because the depth of a balanced binary tree
of n? nodes is 2 log n, and we are making a total of 2n additions
and deletions. Therefore, the complexity of the k-nearest neighbor
rule on an n x n neighborhood is O(n?).

Now, in order for an iterated 3 x 3 enhancement procedure to
have an effective neighborhood size of n x n, the operation must
be iterated (n — 1)/2 times. Each iteration of the nearest neighbor
enhancement procedure on a 3 x 3 neighborhood requires ap-
proximately 36 algorithm steps to find the k-nearest neighbors
(9 log 9 to sort the nine elements and up to nine sets of compari-
sons to find the k-nearest neighbors). If we want to account for an
n x n neighborhood by iterating this basic operation, then about
36 - (n — 3)/2 operations are required. Clearly as n becomes large,
the iterative techniques would be computationally preferable. We
should point out, however, that not all local n x n operations can
be effected by iterating 3 x 3 operations. Furthermore, it is not
always obvious what k x k operation corresponds to the iteration
of a 3 x 3 operation (consider iterating E*).



CORRESPONDENCE

Knowing that it is computationally more effective to iteratively
apply a local enhancement operator than to simply apply a single
more global operator does not shed any light on the important
questions of how many iterations of the enhancement should be
computed. It is very difficult to develop models for the effects of
iteratively applying, for example, a k-nearest neighbor enhance-
ment procedure because of the following,

1) The iteration procedure introduces spatial correlations be-
tween image points that are very difficult to model.

2) Obtaining closed forms for the point distribution of the k-
nearest neighbors of a point from a sample of size n is also very
difficult [6].

Instead, we will describe a simple classification experiment that
will, hopefully, provide some intuition about the effects of iterative
enhancement. The experiment consists of iteratively applying our
enhancement procedures to synthetic images such as those
described in Section IVB. After each iteration, the enhanced image
is thresholded at the minimum error threshold computed on the
basis of the gray level distributions used to create the original
synthetic image. Finally, tables of error versus iteration are
compiled for several of our enhancement techniques.

B. Empirical Evaluation

The experiments described here used an image consisting of a
40 x 40 square embedded in a 128 x 128 background. The gray
levels inside the square were independently normally distributed
with mean p =40 and standard deviation ¢ = 10. The back-
ground gray levels were independently normally distributed with
1 =20 and ¢ = 10. Eight iterations of a) E*, b) ES, c) E8, and d)
gradient smoothing GS (where only the points in the upper 10
percent of the gradient histogram are gradient smoothed at each
iteration) were applied to this image. (The images, their thres-
holded versions, and the distributions of errors can all be found
in [5, Sec. 3.2].) Table I lists number of errors as a function of
iteration for each of the four techniques. We can make the follow-
ing observations on the basis of this table.

1) All the techniques degrade after a few iterations, but E* and
E® seem to degrade more slowly. This indicates that in the absence
of any model for predicting how many times the enhancement
operator should be iterated a k-nearest neighbor enhancement
policy with k <8 (but large enough to provide a noticeable
enhancement) should be adopted.

2) E°, EB, and GS all eliminate interior point misclassifications;
however, E® introduces more edge point misclassifications than
either E® or GS and eventually propagates these errors into the
object and background interiors (by creating a large ramp edge
between object and background).

In order to add confirming evidence to these conclusions, a
second example was run using a 40 x 40 square (u = 40, ¢ = 10)
in a 128 x 128 image (background x = 30, ¢ = 10). Table II lists
errors as a function of iteration. The results are very similar to
those obtained in the first example. The k = 4 procedure does not
do nearly as well in reducing the overall classification error as any
of the other techniques. This is not at all surprising since in the
underlying noise-free images there are only four points (the cor-
ners of the square) having four neighborhoods split between the
object and background. We note that all of the enhancement
techniques yield considerable increases in overall classification
accuracy when compared to thresholding the original image at
the minimum error threshold and that there are apparent advan-
tages to iterating the enhancement procedures (e.g., ES, E8, and
GS all halve their error rates between one and two iterations).

It is worth pointing out that E®, E’, and ES, if iterated
sufficiently often, will produce a constant image since only con-
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TABLE 1
ERRORS As A FUNCTION OF NUMBER OF ITERATIONS
IN THE FIRST EXPERIMENT

4

Method E E E GS
Iteration
1 723 242+ 141 121
2 280 87 87 81
3 166 80 105 92
4 130 84 122 114
5 134 90 148 120
6 132 94 175 146
7 134 94 213 171
8 142 100 244 190
TABLE II

ERRORS AS A FUNCTION OF NUMBER OF ITERATIONS
IN THE SECOND EXPERIMENT

Methoa EY E® E? Gs
Iteration

1 3206 1764 616 708
2 2123 721 237 309
3 1546 514 251 320
4 1177 505 292 360
5 959 551 365 422
6 841 600 423 491
7 768 622 496 565
8 746 751 589 659

stant images are invariant under these operations (see the Appen-
dix for a proof of this). However, this does not rule out using, for
example, E® for a limited number of iterations to enhance an
image.

V. EXAMPLES

In this section, we present the results of applying the enhance-
ment techniques described in Sections II and III to a portion of a
LANDSAT image. (Several other examples are presented in [5,
Sec. 4].) Fig. 1 shows eight iterations of E2, E*, ES, E® and gradient
smoothing (using thresholds on the gradient corresponding to the
lower 20, 40, 60, and 80 percent of the gradient values) as well as
median filtering for this image. We will make the following
(subjective) evaluations of the different enhancement techniques.

1) E?: Using only the two nearest neighbors, while preserving
the integrity of fine image detail, does so, of course, at the expense
of having very little noise cleaning power. It seems to be an
inadequate procedure.

2) E*: Four nearest neighbor enhancement tends to form
clumps from the noise. It does preserve edges and other detail
relatively well.

3) ES: Six nearest neighbor enhancement produces substan-
tially less mottle than E* but does not preserve fine detail through
as many iterations as E* However, as we have seen in the
previous section, there is probably little reason to iterate any of
these procedures more than a small number of times so that that
overall E® is preferable to E*.

4) E®: Iterated 3 x 3 smoothing destroys most of the visible
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e

Fig. 1. Smoothings of LANDSAT image. (a) E%. (b) E*. (c) E®. (d) E®. (e) GS (20 percent). (f) GS (40 percent). () GS (60 percent).
(h) GS (80 percent). (i) Median filtering.
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structure in the image; therefore it is not a desirable enhancement
technique.

5) Gradient smoothing: This approach (using any of the p-tiles
tested) does not preserve the linear features and edges as well as
ES but introduces less mottle.

6) Median filtering: This method produces more mottle than
ES on noisy images while smoothing over linear features and
many edges. It is, therefore, less desirable than either E® or grad-
ient smoothing.

VI. CONCLUSION

ES and gradient smoothing provide the best subjective enhance-
ments over a variety of images. In images containing large regions,
gradient smoothing is more desirable because it will introduce less
mottle into the regions. In images with smaller regions and linear
features, E® will generally provide better enhancements.

It would be desirable to extend these enhancement techniques
to deal with multispectral data. They could then be applied to
LANDSAT images as a preprocessing step to improve
classification results. This could be done either on the multi-
spectral data or on the multi-image of likelihoods of spectral class
membership at each point.

APPENDIX
PATTERNS STABLE UNDER E*

For k <5, there are many different patterns that are stable
under E*; e.g., any pattern consisting of constant gray level verti-
cal (or horizontal) strips of width >2, such as

aabbcc
aabbcc.
aabbcc

On the other hand for k > 6, we can prove that the only stable
patterns must have constant gray level

To see this, let z be the highest gray level in the picture. If the
picture is stable under E*, then at least k of the z neighbors must
be z since z must be the average of its k nearest gray level neigh-
bors and none of these neighbors can be >z. Thus for k = 8, we
see that every neighbor of a point having gray level z must also
have gray level z, which readily implies that the picture has con-
stant gray level z.

More generally, let w be a neighbor of some z such that w has
lowest possible gray level. If w = z, then every neighbor of every z
must also be a z, and the picture is again constant. Suppose that
w < z; thus the neighborhood looks like

2w (1)

or W

.z (2)

(or a rotation of one of these). If k = 7, all seven of the dots must
be z since z is the average of these seven neighbors. Moreover, the
z that are adjacent to the w must each have seven z’s as neighbors
so that the neighborhood looks like

z2z
22222
ZZwzz (1)
ZzZ2zZz
2z2z
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or
22z
22222
2zWz2. (2)
22222
2222

But w must be the average of its seven nearest gray level neigh-
bors, and this is impossible since its neighbors are all z > w. Thus
for k = 7, we cannot have w < z, and so the picture is constant.

Finally if k = 6, then six of the seven dots must be z, while the
seventh dot must be >w by definition of w. Now w must have at
least one neighbor with gray level v < w since it must be the
average of its six nearest gray level neighbors, some of which are z
(>w). This v cannot be a neighbor of any z by definition of w.
Hence in case (1), the dots above and below the w cannot both be
z, since any neighbor of w would then be a neighbor of some z.
Thus the neighborhood in case (1) must look like, e.g.,

222
2zZw
2ZXV

where z > x > w > v. But the z to the left of x must have at least
six z’s as neighbors. So that in particular, the point below x must
be z, and this is adjacent to v < w, contradiction.

In case (2), the neighborhood could look like

. ZWU

.zz (2a)

or

2ZwW
2ZX
44

or

ZZWV
ZZX
22z

(2¢)

where z > x > w > v. In cases (2b, c), the z to the left of the w has
two neighbors < z so that all its other neighbors must be z, and in
particular, the point above the w must be z. This is adjacent to
v < w, contradiction. In case (2a), none of the points adjacent to
the v can be z so that the neighborhood looks like

rv
.ZWS
.z2Z

where z > r, s > w > v. Thus the z’s adjacent to the w each have

two non-z as neighbors implying that their other neighbors are
all z, ie.,

zZzZrv
ZZWS
zZzZ2Z.
222

Similarly, the z’s adjacent to the r and s have two non-z’s as
neighbors so that their other neighbors are all z; and this implies
that the points above the r and to the right of the s—which are
adjacent to v—are Z’s, contradiction.
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In the above discussion, we have ignored the possibility that the
points in question might be adjacent to the picture border, in
which case some of the neighbors used in the proofs might not
exist. Note, however, that if any z is adjacent to the border, then
(for k > 5) all its neighbors must be z’s so that the cases involving
aneighbor w < z must indeed be interior to the picture. Of course,
if we take border effects into account, the striped pattern shown
at the beginning of the Appendix is no longer stable since, e.g., the
right “a” on the top row now has fewer than five a’s as neighbors.
Note also that in the Appendix we are regarding the gray levels as
real-valued; if they are converted into integers after averaging,
there are other possibilities for stable patterns. (The authors are
indebted to one of the referees for these remarks.)

ACKNOWLEDGMENT

The help of Ms. Shelly Rowe in preparing this paper is
gratefully acknowledged.

REFERENCES

[1] A. Rosenfeld and A. Kak, Digital Picture Processing. New York: Academic, 1976.

[2] D. P. Panda and A. C. Kak, “Recursive least squares smoothing of noise in
images,” IEEE Trans. ASSP, vol. 25, 520-524, 1977.

[3] R. Haralick, “Spatial averaging to achieve better classification accuracy,” Univ.
of Kansas Electrical Engineering Tech. Rep.

[4] A. Lev, S. Zucker, and A. Rosenfeld, “Iterative enhancement of noisy images,”
IEEE Trans. Syst., Man, Cybern., vol. 7, 435-442, 1977.

[5] L. Davis and A. Rosenfeld, “Noise cleaning by iterated local averaging,” Univ. of
Maryland Computer Science Center Tech. Rep. 520, Apr. 1977.

[6] R. Duda and P. Hart, Pattern Classification and Scene Analysis. New York:
Wiley, 1973,

A Sliding Scale for Hospital Reimbursement
VICTOR H. AUERBACH

Abstract—Reimbursement by governmental agencies and by third
party payors of general and voluntary hospitals currently does not
take cognizance of the special financial burdens of inner city teaching
hospitals. It is proposed that a formulation, previously described, be
used to provide a sliding scale for reimbursement purposes which
would ameliorate the situation in an auditable, justifiable, and fair
manner.

In a recent paper in this TRANSACTIONS, we derived a function
Br-o which described how to set the ratio of charges to cost such
that profit would be zero. This function was then expressed totally
in terms of such dimensionless values (ranging from O to 1), as the
ratio of inpatients to outpatients, fraction of patients (both in and
out) paid on a cost basis versus a charge basis, fraction of bad
debts in each category, and fractional loss due to reimbursement
for Medicaid patients where only a portion of charges are paid. It
was further proven that the function fp- is independent of either
total charges or costs and was therefore applicable to any hospit-
al, independent of size, as long as the accounting and statistical
parameters were known.

We now wish to propose that the function fp-o has a much
wider applicability than first envisioned and could serve as an
index to be used by government (federal, state, and municipal)
and by noncommercial third party payors (Blue Cross, etc.) to
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assess, on a sliding scale, the true needs of various hospitals with
respect to reimbursement formulas.

At present, each payor (other than the individual payor or com-
mercial insurers) determines how it will evaluate a given hospital’s
efficiency and then reimburses the hospital for that portion of its
patients that represents the payor’s obligation. Affluent or reas-
onably stable community hospitals which serve a paying or totally
insured clientele do fairly well under this form of reimbursement.
Teaching and/or inner city hospitals which serve a poorer patient
population, many of whom are on welfare or who are above wel-
fare standards but still cannot pay their hospital bills, find them-
selves being increasingly squeezed by the reimbursement formulas
into a deficit situation. Government and other noncommercial
third party payors refuse to obligate themselves for patients’ pay-
ments if those patients are not their subscribers. Although it can
be argued that charity is not an obligation of noncommercial
third party payors, the role of government is more obscure in this
regard.

One of the main reasons that government (the federal govern-
ment at least) finds. it difficult to support the hospital needs of
persons who are not covered directly by one of its agencies or by
state or city programs or by commercial or noncommercial insur-
ance is that it would be extremely difficult to draft legislation
which would reimburse some hospitals at a higher or more favor-
able rate than other hospitals, and this is exactly what needs to be
done. The bureaucratic attitude with respect to reimbursement
formulas (and who can say they are wrong) is to treat each and
every hospital by the same set of standards. Unfortunately, this
Procrustean bed standard gives to some affluent hospitals funds
they do not need, does not affect the vast majority of community
and general hospitals adversely since it results in reasonable pay-
ments for reasonable charges, but penalizes the teaching and inner
city hospitals for every “charity” patient whose care they assume.

If we now look at the function fp_,, we note that although it
was derived for use in pricing the laboratory, all the variables
which go into the formula, although derived from laboratory sta-
tistics and accounting data, are applicable to gauging the financial
needs of the hospital independent of the hospital’s size, scope of
operation, or efficiency. Thus the smaller fp-, is (with a lower
limiting value of unity) the less that hospital needs federal inter-
vention. Conversely, the higher 5., is (with no upper limit as
would be the case if there were zero reimbursement) the more
need there is for governmental intervention. This intervention
need not be in the form of a direct cash subsidy which would be
difficult to calculate but could take the form of a percentage in-
crease in the reimbursement formula which would be in propor-
tion to fBp-o for that hospital. Note that such a method of
calculation is independent of the size and cost of the hospital,
since Bp- is itself independent of size and cost and achieves the
desideration of reimbursing for nonpaying patients without, at the
same time, compensating for poor fiscal management or
inefficiency. The possible objection that inefficiency in hospital
operation would result in an increased value of fp—, thus result-
ing in undeserved reimbursement, can be countered by stating
that the numbers which go into the formulation of 5~ are them-
selves clearly verifiable and auditable. Government and third-
party auditors should not, and presumably would not, sanction
payment for obvious mismanagement or lack of proper billing
procedures, but can allow an increased level of payments accord-
ing to the formulation where applicable.

We therefore propose that the Bp-, function, which we have
previously described in this TRANSACTIONS, might serve as a
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