
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNEFIICS, VoL. SMC(-8, No 9. SiPTEMIIik 1978

3) For the vehicle path reticle,

1
V/D1

1
V/D2

(1-C1 Yv V)
VID1

(1 -C2Yv V)
V/D2

I/D,
0

/ID2
0

-C'
0
C2
0

where C, and C2 are defined by

Cl= (1D, ) 2, 2 D( 2
DA
v2

For single- and two-distance VFI, P is given by

P=

(I1+c)/2 0 (1
P= 0 0

(1 -c)/2 0 (1
0 0

01
iJ

-C)/2
0

+ C)/2
0

0

0

0 1

0]j

respectively.

REFERENCES
[1] D. H. Weir, R. H. Klein, and D. T McRuer, "Principles for the design

-Cl,6 of advanced flight director systems based on the theory of manLial
O control displays," NASA CR-1748, Mar. 1971.

-C2 Y5 [2] W. H. Levison, "A model based technique for the design of flight
directors," Proc 9th -4nn. Conf. oan Manual Control, May 1973. pp.

[3] R. A. Hess, "Application of a model-based flight director design
(A.19) technique to a longitudinal hover task" 1A1 .1 ,ircrati, 'vol 14 no.

3, pp. 265---271, Mar. 1977.
[4] - "Analytical display design toi flight tasks conducted under

instrument meteorological conditions," IEEE Trants. Syst.. Mi.
Cybern., vol. 7, no. 6, pp. 453 -462, June 1977

[5] D. L. Kleinman, S. Baron, and W. H. Levison, "An optimal control
model of human response, Part 1: Theory and validation; Part I1

(A.20) Prediction of human performance in a complex task" Iuanamoa
vol. 6, pp. 357 369, 1970.

[6] D L. Kleinman and S. Baron, 'klanned V chicle SYstem .4nal.sis hb
Means of Modern Control Theoryv NASA CR-1753, June 1971.

[7] s. Baron, et al., "Application of optimal control theory to the predic-
tion of human performance in a complex task," Wright Patterson
Air Force Base, AFFDL TR-69-81. 1970.

[8] A. J. Grunwald and S. J. Merhav, "Vehicular control by visual field
cues- Analytical model and experimental validation," IEEE Trans.
Syst., Man. Cybern., pp. 835 -845. Dec. 1976.

[9] ",A study of display augmentation in visually controlled vy-
(A.21) hicles," Technion Aeronautical Engineering (TAE) Rep. 284, Haifa,

Israel, May 1976.
[10] D. H. Weir and D. T. McRuer, "A theory for driver steeritng control

of motor vehicles," Road User- Characteristics, Highway Research
Rece 247, 1968

Correspondence-

An Approach to Spatial Pattern Recognition
of Solid Objects

M. BRIOT, M. RENAUD, AND Z. STOJILJKOVIC

Abstract The tactile recognition of solid objects with the aid of
gripping devices of the polyarticulated gripper type is discussed. The
objects, which are assumed to have simple geometric shapes and
numerous axes of summetry, are grasped by a gripper made of four
symmetrical fingers and each equipped with several potentiometers
to measure the angles between them. An object chosen at random and
with equal probability from one of three different classes was

assigned to the class to which it has the highest probability density of

belonging. Tlis density is unknown, a priori, and is estimated by the

kernel method from the learning observations (vectors) coming from
measurements made by the gripping device. In case of wrong
classification an adaptive procedure (supervised learning) allows a

modification of the initial distribution of the learning observations in
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the course of the recognition phase. Two types of kernel were used in
the two following cases to estimate the probability density of
belonging to a class, the unit kernel and the Cauchy kernel: 1) use of
the Eucidean distance, and 2) use of a modified Euclidean distance in
order to take into account the dispersion on each component of the
observation vector. The corresponding strategy to each case is given
and the results obtained commented upon.

1. INTRODIUCTION

Working within the framework of research carried out in thc

robotics field at the L.A.A.S. of Toulouse, France, and the Mihailo

Pupin Institute of Belgrade. Yugoslavia, we were particularly in-

terested in the problem of tactile recognition of objects and their

manipulation. This has both industrial and medical applications.
A certain number of transducers such as TV cameras, [1] range

finders [2], etc., have already been developed to recognize objects.
Our approach was different as we used tactile information. Two

types of tactile information were used: 1) pressure information

coming from a transducer called "artificial skin" [3], and 2) angu
lar information.

In this correspondence we consider objects which aite
recognized solely from angular information given by the grasping
system. To this end we developed a polyarticulated mechanical

0018-9472/78/0900-0690$00.75 C) 1978 IEFE

c= I

L1

and

690



CORRESPONDENCE

Fig. 1. Gripper grasping cube.

Fig. 2. Gripper with its joints at full stretch.

system giving 12 independent angular measurements. (In-
cidentally, other grippers have been realized in other parts of the
world, e.g., the Belgrade "hand" [4], [5], and a tridigital gripper
developed in Japan [6].)

In the first part of this correspondence we describe the grasping
system used. The second part is devoted to 1) a description of the
classifier based on local estimates of probability density (by the
kernel method), and 2) the learning method. Finally, in the third
part, we describe and comment on the experimental results
obtained.

II. THE GRASPING SYSTEM
The handling system used was composed of a four-finger grip-

ping device, each finger having three joints; each joint was

equipped with a transducer for measuring the angles between
them. This gripper is shown grasping a cube in Fig. 1. The trans-
ducers on each joint are potentiometers giving information in
proportion to the angles of rotation. An angle has zero value when
the two corresponding phalanges are in a straight line. Fig. 2
shows the gripper with its joints at full stretch, i.e., there are no

angles. Furthermore, all the angles must be positive since no joint
can be bent backwards.
The information provided by the grasping system is represented

by a point in a 12-dimensional space: X = (X1, X2, * , XI2)T.
The components X1, X2, X3 are the angles of the joints of the first
finger, being the joint nearest to the central support and the fur-
thest away. The components X4, XS, X6; X7, X8, X9; XIo, X 1,

X12 correspond to the second, third, and fourth fingers, respec-

tively, moving in a clockwise direction.

As seen in the above paragraph, information given by the trans-
ducers are analog voltages. These voltages are read by an analog-
to-digital converter which serves as an interface between the
"Mitra 15" minicomputer and the grasping system. Each measure-
ment is made to 12 bits which gives a sufficient degree of accuracy
for our purposes. The data can be either recorded on magnetic
tape when off-line processing is desired, or used directly to classify
an object unknown to the real-time classification program.
The set of objects which we considered consisted of a sphere

(6-cm diameter), a cube (7-cm edges), and a regular tetrahedron
(10-cm edges). These objects were chosen at random, the only
constraint being that they should not be so big as not to be totally
grasped by the device. In addition, each object had to be grasped
in such a way that it was in contact with each of the joints. In
practice, however, this was not always possible since the joints
cannot be bent backwards.

III. CLASSIFICATION AND LEARNING PROCEDURE

A. Decision Rules
We used three sets of observations (which we call learning

observations): {XI}I?1, {X?J}.30= and {X?3})3?1 from the measure-
ments made by the gripping device grasping three objects 01, 02,
and 03 representing the sphere, the cube, and the tetrahedron,
respectively.
We made the following hypotheses.
1) The series above are series of real random variables iden-

tically distributed following the laws of probability Po0, Po2, and
P03, respectively. These laws have densities p( 61), P( 102), and
P(- 103)

2) The observations are considered as m dimension vectors
which are written: Xl = (X51, X2, , Xim)T.

3) The three solid objects are represented with equal probabil-
ity in the gripper device.
The problem of identification of the solid object lies in finding

a decision rule, or strategy, defined on the space of observations
R' and taking its values in a set of classes of solid objects 61, 62,
and 63.
To put it another way, and based on an observation coming

from 01, 02, or 03, one should be able to recognize if the observed
solid object belongs to class 61, 62, or 63.

In the case where p( 064 P( 102), and p( 103) are known, we
know that the optimal decision rule (in the sense of minimizing
the error probability of misrecognition) is Bayes' law.
The strategy at point x E R' values 6q if

p(x I6) = max p(x 1l6).

In the application under consideration these densities are
unknown. Thus a new strategy was constructed thanks to an
estimate of the densities from the series given above: {X.}!,=,
I = 1, 2, 3.

In order to choose the estimate procedure best adapted to our
problem, we did a statistical analysis of the data given by the
gripping device, helped by a classification algorithm of self-
teaching Gaussian data [7]. This analysis showed that this is a
problem concerning multimodal distributions.
Nonparametric estimate methods are all indicated in this case

since they have the advantage of not requiring an hypothesis
about the density form. Among the nonparametric methods, the
Rosenblatt-Parzen kernel method [8], [9] is well suited to the
decision problem because of the ease with which it can be put into
action. We chose to use this method, taking a rectangular function
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(unit kernel) as the window, and a Cauchy-type continuous
function.
We studied the behavior of these two kernels after previously

treating the learning observation series {Xl}. This treatment con-
sisted of selecting the observations so that each mode was repre-
sented in a balanced way.

Let y belong to the space Rm. We take the modified Euclidean
norm

Ily l= E (Yijhl)2
-j=l1

I = 1, 2, 3

as the norm for y, where the components of the vector h' are

strictly positive. It was noted by Vhf that the quantity (in propor-

tion to the volume of the ellipsoid of the equation IIy Ihl = 1) was

m

Vhl f- hM, I= 1, 2, 3.
j=l

In the kernel method, the density estimator is written

in
Pn(X I 0I) = E Kh(X X), 1= 1, 2, 3; n E N

where

K^l(y-(ht Yht S hl) y ER'; I = 1, 2, 3,

and Khl( ) is a bounded measurable function of R' called
"kernel." In addition it is assumed that

mKhi(y) dy = 1, 1 = 1, 2, 3.
JRm

The corresponding strategy values 6q if

n I

E Khq(X X7)> Khi(X XI), = 1, 2, 3; 1 q.

Vx i= I Vhl i=1

If not, 6q is chosen in an equiprobable way.

In R', Cauchy's kernel is expressed as [9]:

Kht(y) = M 1 +1= 1, 2, 3

with

(m + l)F(m/2) sin [i/(m + 1)]
'm- 2#ftm + 2)/2

The previous strategy values 6q if

ln 1 I 1

vE > sv _ ll !JM
Vhn i- 1 + |ix- X9|h+ Vhl

I = 1, 2, 3; 1 q.

If not, 6q is chosen in an equiprobable way.
To assure the convergence of the above strategies when n -oo

h1 must be a particular function of n. However, in our case, n

having been given in advance, h' must be considered as a constant.

As far as vector h' is concerned we envisage two cases:

1=1,2,3. (1)

C
- n 3

flH
j=l 1=1

113m (O1s 52 . am) I= 1, 2, 3 (2)
AZ.)

talJ is taken as the standard deviation of the variables X'kl i = 1
2, n. In practice, cr is estimated by

n
l - )2 1/2Cl_nE W.J- J

with

B. Learning Procedure [11]
The learning procedure is divided into two stages.
1) The first stage consists of randomly obtaining the initial n

samples for each class. In this case the classification gives accurate
results ifX falls within the central region of a class, but much less
so if X falls near the boundaries between classes, especially if these
are close or overlap.

2) The second stage is an adaptive one consisting of destroying
the initial distribution so as to empty the central regions of their
samples to the benefit of the new ones which are positioned on the
boundaries and in the critical zones. The number of n samples in
each class remains constant. From this it is deduced that if an
observation X to be classified "falls" in a central region, it will still
be correctly classified but that, on the contrary, if it "falls" on the
periphery of a class, the precision of the classification will be
better than before because of the greater concentration of samples.
To accomplish this operation the following relation was used:

Eiq(X) - pn,(X 1i)
Pn(X 16q)

which represents an index of X belonging to class 6, when the
decision gives class 6q,

All the Eiq(X) are calculated, and we look for the maximum
value for i * q:

max Eiq(X) -Epq(X).
i$q

Class 6p is the one to which X is nearest. A test is then carried out
to determine whether Epq(X) is above a certain threshold Eo
beyond which X can be taken to modify the initial learning. To
see which sample has to be replaced, all the observations of 6q are
examined to find the one which is least like those of class 6p, i.e.,

Epq(Xq) = min Epq(X7), i = 1, 2, n

The values of indices of vectors X and Xq belonging to class 6p are

compared with each other. If Epq(X ) < Epq(X), then Xi is

replaced by X in the initial observations. If Ep,q(Xq) > Epq(X),
then Xq is retained in the initial observations.

This procedure has the advantage of improving the
classification without increasing the amount of information to be
stored in the computer memory. The flowchart in Fig. 3 shows
how the algorithm makes it possible to pass readily from
classification to adaptive supervised learning.

IV. EXPERIMENTAL RESULTS

The results shown in Figs. 4 and 5 are given in the form of
curves representing variations of the probability of error of
misclassification as a function of the C parameter which charac-
terizes the window width. This probability of error is estimated by
counting wrongly classed samples coming from test observations
as distinct from observations which serve to calculate the
strategies (learning observations). For this operation, 30 test

observations per class were used. We studied the influence of the
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TABLE I
II

Distance unselected selected

Euclidean 14 % 5 %

modified
Euclidean 3 % 2 %

J / Error
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40 36 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~/

20

10I=Ct = C2 -0

0,1 0,5 I

(a)

5 10

Fig. 3.

C parameter on the calculation of the probability density in
the case where, on the one hand, the Eucidean distance is used,
and on the other, the modified Eucidean distance.

In addition we studied the behavior of these strategies after
treating a series of learning observations. We compared the fol-
lowing cases: a) where no treatment was carried out, and b) where
observations were selected, making sure of having the same
number of observations for each mode (subclass). We sum up in
Table I the minimum value of the probability of wrongly classify-
ing an object for the various cases considered.

V. REMARKS
The observation given in the previous paragraph calls for a

certain number of remarks.
1) The selection of learning observations used for the calcula-

tion of strategies brings about a sharp decrease in the probability
of wrongly classed objects. This selection, which takes into
account the position of the object in the gripper, allows a taking
into account in its turn of the parameters linked to the object's
structure. In this case the parameters are masked by the probabil-
istic classification method used.

2) The use of the modified Eucidean distance, which allows the
dispersion of each component of the vector observation to be
considered, i.e., it makes the distributions of each class more homo-
geneous, also serves to decrease the probability of wrongly classed
objects.

no I\ /
20\

10

C
C,

0,5 1 5 10

(b)

Fig. 4. Error probability of unit kernel method. (a) Unselected (1) Euclidean dis-
tance. (2) modified Eucidean distance. (b) Selected (1) Euclidean distance, (2)
modified Euclidean distance.

3) It is interesting to note the insensitivity of the C parameter
to low values of the strategy using the Cauchy kernel. This gives it
a definite advantage over the method using the unit kernel, for
which the choice of C is very critical. This result can be explained
in the following way. When the density functions are cut into a
finite number of points, e.g., Cauchy's kernel, one can always
decide whether or not an observation belongs to a given class,
which is not the case when a function of the unit kernel type (cf.
Fig. 6) is used. In fact, it is very interesting to use a Cauchy
kernel (or any function of the same type) in the case of a small
number of learning observations.

VI. CONCLUSION
The approach described in this correspondence shows that

angle measurements can be usefully employed for the problem of
the tactile recognition of simple objects. It is likely that the recog-
nition performance could be improved by a combination of pres-
sure information (using an "artificial skin") and angle
measurements. The two types of transducers were compared in
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Random Mosaic Models for Textures

BRUCE J. SCHACHTER, AZRIEL ROSENFELD, FELLOW, IEEE,
AND LARRY S. DAVIS

Abstract-Several models for generating isotropic, "cellular"
textures are discussed. These models tessellate a region into cells, and
assign gray-level probability densities to the cells. The models can, in
principle, be used to predict statistical texture properties such as
those commonly used for texture classification.

I. INTRODUCTION
Understanding texture is an important aspect of image analysis.

Fig. 6. It plays a prominent role in applications as diverse as cytology,
radiology, and remote sensing (see [1] for a review of texture
analysis studies through the end of the 1960's). Most current tex-

[12]. A detailed study concerning the recognition of solid objects ture models are descriptive models based on second-order sta-
with the aid of the grasping devices such as artificial hands, poly- tistics of the gray levels in a texture. The most widely known
articulated grippers, and grippers with parallel surfaces was also models of this type are based on matrices of co-occurring gray
developed in [13]. Another way of improving recognition is to levels (Haralick et al. [2]) and histograms of gray-level differences
extend the research on learning and adaptive learning. In particu-
lar, one could change either the information vector by increasing
the number of fingers, joints, or both, or the number of memorized Manuscript received August 19, 1976; revised May 10, 1978. This work was sup-
elements that determine the classes. It may also be useful to carry ported in part by the Division of Engineering, National Science Foundation, under

out a statistical multivariate an s oGrant ENG-74-22006 and in part by the Division of Mathematical and Computer
out a statistical multivariate analysis Of the working space. Sciences, National Science Foundation, under Grant MCS-76-23763.
Finally, the use of an Eucidean distance in the probability density B. J. Schachter was with the Computer Science Center, University of Maryland,
estimator gives a simple solution to the recognition algorithm. College Park, MD 20742. He is now with the General Electric Corporation, Daytona

Bleach FL 32015.
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