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tion techniques as and when introduced may thus be incorporated
in the system and tested.
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A Note on Distance-Weighted k-Nearest Neighbor Rules

T. BAILEY AND A. K. JAIN

Abstract A distance-weighted k-nearest neighbor rule is not
necessarily better than the majority rule for small sample size if ties
among classes are broken in a judicious manner. The behavior of
several tie-breaking procedures is demonstrated using the bivariate
distributions for three classes used by Dudani. In the infinite sample
case, the majority rule is the best among all distance-weighted rules.

I. INTRODUCTION

In a recent paper, Dudani [1] introduced the concept of a
distance-weighted k-nearest neighbor rule. This rule differs from a
majority k-nearest neighbor rule in that it assigns a weight to each
of the k nearest neighbors. A pattern with unknown classification
is then assigned to that class for which the weights assigned to its
training samples sum to the greatest value. Dudani proposed that
when the number of training samples is small or of moderate size,
then the distance-weighted rule will yield a smaller probability of
error than the majority rule. He showed the admissibility of the
distance-weighted k-nearest neighbor rule by demonstrating that
the probability of error, for a particular data set, obtained by the
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distance-weighted rule is strictly lower than that for the majority
rule.
The main reason for the superior performance of the distance-

weighted rule over the majority rule seems to be the absence of
ties in the former. While Dudani's implementation of the majority
rule counts all ties as errors, there are several intuitive methods to
resolve ties. In this correspondence, we have duplicated the experi-
ments reported by Dudani and demonstrated that if ties occur-
ring in the majority rule are resolved in a judicious manner, then
the admissibility of the distance-weighted rule is questionable. We
have also proved that, in the infinite sample case, the majority rule
has the lowest probability of error among all distance-weighted
rules.

II. RESOLUTION OF TIES FOR SMALL SAMPLE CASE

The following strategies have been implemented in our experi-
ments to resolve ties which occur when the majority k-nearest
neighbor rule is used.

1) Ties are resolved by randomly selecting one of the tied pat-
tern classes. This method is frequently employed [2, p. 223].

2) Ties are resolved by considering fewer than k nearest neigh-
bors. That is, if a tie occurs among the k nearest neighbors, then
we consider (k - 1), 1 = 1, 2, , k -1, nearest neighbors succes-
sively until the tie is resolved. Patrick [2, p. 224] mentions a simi-
lar approach.

3) Ties are resolved by considering more than k nearest neigh-
bors. As in method 2), if a tie occurs among the k nearest neigh-
bors, then we use (k + 1), 1= 1, 2, nearest neighbors
successively until the tie is resolved.

Computationally, method 3) is least attractive. However, im-
plementing any one of the above methods to resolve ties takes no
more effort than computing the weights in [1]. Each training set
used in our experiments consists of 50 samples from each of the
three bivariate distributions described in [1]. The test set contains
1000 samples per class for a total of 3000 samples. An average
performance was obtained by considering six independent train-
ing sets thus duplicating Dudani's experiments. The results of our
experiments are shown in Fig. 1. Curves (A) and (A) in Fig. 1 are
identical to the two curves in Fig. 1 of [1]. The first two strategies
for resolving ties as discussed above give almost identical results,
and their performance is shown by curve (El). These results show
that if any one of the methods for resolving ties is used, the major-
ity rule gives better performance than the distance-weighted rule
for moderate values of k(k < 26). For large values of k(k > 26) the
error rate of the majority rule starts to increase, while the error
curve of the distance-weighted rule remains essentially flat.
One advantage claimed in [1] for the distance-weighted rule is

that its performance does not peak. While this is true for k < 50,
as far as the average performance on this data set is concerned, for
specific training sets there are instances where the probability of
error of the distance-weighted rule attains a minimum and starts
to increase as k increases. The deterioration in the performance of
the majority rule, even with a provision to resolve ties, for large
values of k is to be expected, and it is a consequence of the "curse
of finite sample size." The same phenomenon occurs for the
distance-weighted rule. Thus, when only a finite number of train-
ing samples is available, the value of k chosen should be a small
fraction of the number of training samples [3, p. 105].

III. ASYMPTOTIC PERFORMANCE OF A WEIGHTED RlJLE
We now define the problem in a more formal way. Let x be a

test pattern, and let 0 be the class of x. Let X, be a set of n training
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(A) Majority Rule All ties are errors

(A) Distance-Rieichted Rule of Dudani

(°) Ma ority Rule - Ties broken using fewer neighbors
Ties broken at random

(s) tea'ority Rule - Ties broken usinq more neighbob-s

10

NUM-BER OF NEAREST NEIGHBORS

Fig. 1. Error rates for several nearest neighbor rules.

patterns whose classes are known. Let Xk = Kxi, i = 1, k> be the
sequence of k patterns in X, which are closest to x. Let ok = <oi,
i = 1, k) be the sequence of classes of the k patterns in Xk. Sup-
pose there are c classes {wj, j = 1, c}. A weighted k-nearest neigh-
bor rule T classifies x using a weight function t, = ti(x,Xk), i = 1, k
which assigns a nonnegative weight to each element of Xk. The
weight assigned to class wj is

k

Tj= tio,
it=

where 6 is the Kroneker delta. The rule T is

classify x as w, if rt= max tj.
j= 1,c

If the weights of the k closest patterns are all the same, ti = tI,
= 1, k, then the weighted rule T reduces to the usual majority

rule M. We assume ties are broken by randomly choosing from

among the tied classes.
Theorem: In the infinite sample case (ni -x+ o) the probability of

error of the majority k-nearest neighbor rule is minimum among
all weighted k-nearest neighbor rules.

Proof: The probability of error of a weighted rule T may be

written

Let 0' be the class assigned to x by rule T. Then the probability of
error for a given sample x and a given sequence of closest neigh-
bors Xk is

Pf(elx,Xk,T) = 1 - P,(0 = Wj, = Wj|X, Xk, T)
i=1

(2)1 - P(wj x)Pnl(wj Xk *T)
j=l

since 0 is determined independently of 0'. In (2), P,(wj Xk, T) is an

average over all ck possible values for the sequence of classes Ok:

Ck

P,(wji Xk,T) = P,(wjl AI,T)P,(A1 Xk)
1=1

(3)

where Al= Ka', i = 1, k> is one of the possible values of (k,
a' E {Wj, j- 1, c}.

For a particular x and Xk, the difference in the probability of

error between the weighted rule T and the majority rule M may be

written as

An= Pn(e Xk,T) - P,(e x,Xk,M).

Using (2) and (3) in (4),
Ck C

A, = E Pf(A IXk) E P(wj I)
1=1 j=l

(4)

tPn(w;j A ,M)-P,(w1j l,1A T)' (5)Pn(e I T) = Pfl(e IxXk,T) dF(Xk x) dF(x).

. 6 a

0 9 I 5
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For a particular Al, let w, be the classification of x using rule T

(rt = max Ij),
j= 1,c

and let wm be the classification of x using rule M

(km = max kj),
j Ic

where kj is the number of times class wj appears in Al.
Then

Pn(W1 A1,M) = 6wj,wmg

Pn(W1 A1,T) = 6Wj,W1I
and (5) becomes

(6)
Ck

A"= E Pn(AIIXk){P(Wm X)- P(WJ X)}-
1=1

Since the k samples in Xk are chosen independently, the proba-
bility of a particular class sequence Al is

k

P,(Al Xk)= H Pn(ai Xi).

Now,

k

lim Pn(A1jXXk) H P(ai x). (7)
nl-oc i= 1

Since class wj appears kj times in Al,
k C

H P(aiIx) = Hl [P(wjIx)]kj (8)
i=l j=l

Using (6)-(8), the difference in the asymptotic probabilities of
error for the weighted and majority rules is

ck c
A = lim An = {P(Wm X) P(wt X)} H [P(W X)]j.

n-c 11 j= 1

The sum over all c' possible values of Ok can be written in another
order. For each Al there is an unique A' such that (ai = wm) =
(a' = w1), (ai = wt) => (a' = wm), and (ai = wj) =: (a, = wj) for all
j + m, t. Thus, for A', rule T classifies x as wi, and ruleM classifies
x as w,. Since {Al} and {Al} are identical, A may be written as

A = 2(AAI + AAI')
1 Ck C

2E {P(Wm X) P(Wt x)} Hj [P(Wj x)]kj21=1 j=l

1 Ck c

+ E {P(W,IX) - P(WIX)} fH [P(WIX)]kj2l=1 j=l

where w, =w,, w=wm, and wJ = wj for j ¢ m, t.
The above equation can be rewritten as

1 Ck

A = 2 E H [P(wj x)]kj{S + s'}
I= I j: m,t

where

,j[P(W X)]k"'[p(Wt X)]k {p(Wm X) _(Wt
S='0

(9)

and

Sf I [P(wt x)]k-[P(wmI x)]kt{P(wt IX) - P(Wm X)}
1 0,

if Wm * W,

if Wm = wt.

To simplify the notation let g,,, = P(wm x) and g, = P(w, x). Then
S + St = |g tgg(g_9 g )(gkmm k, _ gkm - k,) if Wm 7& wt

if Wm = Wt.

Since, by definition,

km = max kj,
j 1.C

we have km- k > 0.
For arbitrary g, and g, we have

km k, 2 0=>(gm _g1)(gk- k Yt-g ) > 0

=>S + SI > 0

=:,A > 0

=-P(eI T) > P(eIM)
and the theorem is proved.

IV. CONCLUSION
We have shown that if the number of training samples is large,

then the probability of error of a majority rule will be no more
than that of any weighted rule. In addition, experiments in a data
base of small sample size indicate that, for small values of k, the
majority rule (with provision to resolve ties) performs better than
the distance-weighted rule proposed by Dudani. These results
suggest that distance-weighted k-nearest neighbor rules offer little
advantage over the majority rule.
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A Study of Adaptive Control Principle Orthoses
for Lower Extremities

M. KLJAJIC AND A. TRNKOCZY

Abstract Using qualitative analysis of the stochastic model of
human locomotion, and its experimental verification on the basis of
gait parameter variability and energy consumption in relation to
cadence, some properties relevant to normal walking and to the
choice of adequate control principles of orthoses based on functional
electrical stimulation (FES) are established. It is pointed out that in

Manuscript received December 13, 1976; revised July 25, 1977. This work was
supported in part by the Slovene Research Community, Ljubljana, Yugoslavia, and
in part by the Rehabilitation Services Administration, Department of Health, Educa-

if Wm # Wt tion, and Welfare. Washington, DC.
The authors are with the J. Stefan Institute and the Faculty of Electrical Engineer-

if Wm = W, ing, University of Ljubljana, Ljubljana, Yugoslavia.

0018-9472/78/0400-0313$00.75 (© 1978 IEEE

313


