
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. smc-8, NO. 12, DECEMBER 1978

hold in the presence of a spatial illumination gradient," Atti Ford. Ronchi,vol.
10, pp.371-379,1955.

[5] A. Fiorentini, "Further measurements of the differential threshold in the
presence of a spatial illumination gradient," Atti Ford. Ronchi, vol. 11, pp.
67-71, 1956.

[6] D. Teller, "The influence of borders on increment-thresholds," Ph.D. disserta-
tion, Dep. Psyc., Univ. California, Berkeley, 1965.

[7] D. Kahneman, "Methods, findings and theory in studies of visual masking," in
Information-Processing Approaches to Visual Perception, R. N. Haber, Ed. New
York: Holt, Reinhart and Winston, 1969, pp. 90-112.

[8] A. N. Netravali and B. Prasada, "Adaptive quantization of picture signals based
on spatial masking," in Proc. IEEE, vol. 65, pp. 536-548, April 1977.

[9] G. L. Anderson and A. N. Netravali, "Image restoration based on a subjective
criterion," IEEE Trans. Syst. Man, Cybern., vol. SMC-6, pp.845-853, Dec. 1976.

[10] B. R. Frieden, "Image restoration by discrete deconvolution of minimal length,"
J. Opt. Soc. Amer., vol. 64, pp. 682-686, 1974.

[11] B. E. A. Saleh, "Trade-off between resolution and noise in restoration by super-
position of images," Appl. Opt., vol. 13, pp. 1833-1838, 1974.

[12] M. J. McDonnell, "Nonrecursive image restoration using a finite filter array,"
Optik, vol. 43, pp. 159-174, 1975.

[13] T. E. Reimer and C. D. McGillem, "Constrained optimization of restoration
filters," Appi. Opt., vol. 12, pp. 2027-2029, 1973.

[14] T. E. Riemer and C. D. McGillem, "Optimum constrained image restoration
filters," IEEE Trans. Aerosp. Electron. Syst., vol. AES-13, pp. 136-146, 1977.

[15] A. Papoulis, Systems and Transforms with Applications in Optics. New York:
McGraw-Hill, 1968.

[16] J. H. McClennan, "The design of two-dimensional digital filters by transforma-
tions," in Proc. 7th Annu. Princeton Conf Inform. Sci. and Syst., Mar. 1973, pp.
247-251.

[17] J. 0. Limb, "Vision oriented coding of visual signals,"th.D. dissertation, Univ.
West. Australia, 1966.

[18] Z. L. Budrikis, "Visual fidelity criterion and modeling," in Proc. IEEE, pp.
771-779, July 1972.

[19] J. 0. Limb, "Picture coding: The use of a viewer model in source encoding," Bell
Syst. Tech. J., vol. 52, no. 8, pp. 1271-1302, Oct. 1973.

[20] T. G. Stockham, Jr., "Image processing in the context of a visual model," in
Proc. IEEE, vol. 60, pp. 828-842, 1972.

[21] T. N. Cornsweet, Visual Perception. New York: Academic, 1970.
[22] C. F. Hall and E. L. Hall, "A nonlinear model for the spatial characteristics of

the human visual system," IEEE Trans. Syst., Man, Cybern., vol. SMC-7, pp.
161-170, Mar. 1977.

[23] W. K. Pratt, Digital Image Processing. New York: Wiley-Interscience, 1978.

Disaggregative Clustering Using the Concept of

Mutual Nearest Neighborhood
K. CHIDANANDA GOWDA AND G. KRISHNA

Abstract-A nonparametric, hierarchical, disaggregative cluster-
ing algorithm is developed using a novel similarity measure, called
the mutual neighborhood value (MNV), which takes into account the
conventional nearest neighbor ranks of two samples with respect to
each other. The algorithm is simple, noniterative, requires low
storage, and needs no specification of the expected number of
clusters. The algorithm appears very versatile as it is capable of
discerning spherical and nonspherical clusters, linearly nonseparable
clusters, clusters with unequal populations, and clusters with low-
density bridges. Changing of the neighborhood size enables discern-
ment of strong or weak patterns.
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I. INTRODUCTION

The objective of cluster analysis is to group aset of elements
(data units or samples) into clusters such that elements within a
cluster have a high degree of similarity, while elements belonging
to different clusters have a high degree of dissimilarity. The parti-
tioning of a data set into subsets can be divided into hierarchical
and nonhierarchical methods. The general rationale of a nonhier-
archical method is to choose some initial partition of the data
units and then alter cluster memberships so as to obtain a better
partition according to some objective function. In hierarchical
clustering methods, the sequence of forming groups proceeds such
that whenever two samples belong (or do not belong) to the same
cluster at some level, they remain together (or separated) at all
higher levels. Hierarchical clustering procedures can be divided
into agglomerative methods, which progressively merge the ele-
ments, and disaggregative methods, which progressively subdivide
the data set.

There exists a variety of hierarchical disaggregative clustering
techniques. Williams and Lambert [1] and Lance and Williams [2]
consider the monothetic disaggregative methods under the head-
ing "association analysis." In their method the population of indi-
viduals, specified by binary attributes are divided with respect to a
single attribute, so that, in the two resulting subpopulations, this
attribute is possessed by all members of one andlacked by all
members of the other. Each of these groups may be further sub-
divided on any of the remaining attributes, and so on, until some
satisfactory configuration is obtained. Crawford and Wishart [3],
[4] present a variant on monothetic division based on an interac-
tion measure. Macnaughton-Smith [5] uses dissimilarity analysis
for hierarchical subdivision. In this method, a new set is grown by
hierarchically transferring samples from the original set. The first
sample used to grow a new set is selected such that it has the
highest dissimilarity with respect to the rest of the samples of the
original set. The second sample to be added to the new set is
selected such that it has high similarity with respect to the ele-
ments of the new set and high dissimilarity with respect to the
remaining elements of the original set. The process of growing the
new set is stopped when no sample, which is more similar to
the new set than to the rest of the original set, is available. Rose [6]
outlines a statistical method to identify cut points and cut sets in a
weakly connected graph of the data set. The removal of such
points and lines divides a set into subsets. Edwards and Cavalli-
Sforza [7] propose a method of examining (2N 1 - 1) partitions of
a data set containing N elements and choose that division which
makes between-cluster sum of squares maximum and within-
cluster sum of squares a minimum. Scott and Symons [8] show
that the number of partitions to be considered is less than
(2N- 1 _ 1). Casetti [9] and Hung and Dubes [10] describe disag-

gregative clustering approaches based on the use of discriminant
analysis. The procedure in this analysis is to begin with an initial
partition, compute a linear discriminant function, and then itera-
tively reassign points and recompute discriminant functions until
the readjusted partition becomes the optimal. Mayer [11]
describes a variant of the discriminant analysis approach which
uses a single dominant variable to specify an initial partition and
to impose an ordering on the samples.
Chidananda Gowda and Krishna [12], [13] have introduced the

concept of a new similarity measure, called the mutual neighbor-
hood value (MNV), and developed a versatile algorithm for
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agglomerative clustering. The disaggregative clustering method
presented in this paper is also based on the concept of mutual
neighborhood value. The method presented here is superficially
similar in some aspects to the method based on the dissimilarity
analysis of Macnaughton-Smith [5], although the underlying ra-
tionale is quite different.

Section II covers the philosophy of the approach and gives the
definitions of new terms used in this correspondence. Section III
presents the computational aspects of the algorithm. Section IV is
devoted to the presentation of some typical examples of disag-
gregative clustering which justify the efficacy of the approach.
Finally, in Section V, we give an overall summary.

II. CONCEPTS AND DEFINITIONS

Cottam et al. [14], [15], Callaghan [16], Hamming and Gilbert
[17], and Clark and Evans [18] make some allusions to the idea of
mutual neighborhood. In fact, Cottam et al. use the concept of
";paired neighbors" (which have each other as nearest neighbors)
to measure the characteristics of plant communities. But our real
motivation for considering the concept of mutual neighborhood
comes from real-life observations.

Let us consider two persons, A and B. If A feels that B is his
closest friend, and B also feels the same, then there exists a feeling
of mutual closeness between them, and hence they will group
together as close friends. On the other hand, if A feels that B is not
such a close friend, then, even if B feels that A is his closest friend,
the actual bond of friendship between them becomes weaker. As
yet another possibility, if each feels that the other is not his friend
at all, then they do not group together as friends. In other words,
the strength of the bond of friendship between two persons is a

function of mutual feelings rather than one-way feeling. By anal-
ogy it can be said that the possibility of clustering of two samples
is a function of mutual nearness rather than conventional one-way
nearness. This is the main philosophy behind the development of
this clustering algorithm. The degree of mutual nearness of two
samples is indicated by the mutual neighborhood value between
them.

Mutual Neighborhood Value
The mutual neighborhood value between any two samples is

the sum of the conventional nearest neighbor ranks of these two
samples, with respect to each other.

Let X1, X2, , XN be a set of N Ldimensional vectors called
samples, where the Xi's take values in a metric space upon which
is defined a metric d.

Let Xk be the mth nearest neighbor of Xi and Xj be the nth
nearest neighbor of Xk. Then the mutual neighborhood value
between Xj and Xk is defined as (m + n). That is, MNV (Xj,
Xk)= (m + n), where m, n E {0, 1, 2, , N- 1}.
When m = 0 and n = 0, it is to be understood that each point is

its own zeroth neighbor. Therefore,

MNV (Xi, Xk) | {2,3, 4, ,2N-2}, j k

0
,

k

The MNV is a semimetric and satisfies the first two conditions
of a metric:

1) MNV (Xi, Xk) 0, and MNV (Xi, Xk) = 0:Xj = Xk,
2) MNV (Xi, Xk) = MNV (Xk, XJ).

An Example
We give a simple example to elucidate the concept of mutual

TABLE I
NEAR NEIGHBORS AND MUTUAL NEIGHBORHOOD VALUES

First Second Third Fourth FifthSample NN NN NN NN NN

A B C D F E
(0) (4) (3) (6) (6) (8)

B D E A C F
(0) (3) (4) (4) (7) (8)

C A F B D E
(0) (3) (3) (7) (8) (10)

D E B A C F
(0) (2) (3) (6) (8) (9)

E D B A F C
(0) (2) (4) (8) (9) (10)

F C A B D E
(0) (3) (6) (8) (9) (9)

G C H A F B
(0) (100) (3) (100) (100) (100)

H G C A B D
(0) (3) (100) (100) (100) (100)

A0B

F

Fig. 1. Eight sample points.

neighborhood value. Consider a data set {A, B, C, D, E, F, G, H} as
shown in Fig. 1. Let the five nearest neighbors, according to
Eucidean distance measure, of each sample point be as shown in
Table I. In this neighborhood table, the first element of each row
(written below sample) is the sample under consideration for
which the five nearest neighbors are found. The remaining entries
in that row are the conventional nearest neighbors (NN) of the
first entry. For example, in row 1, the entries B, C, D, F, and E are
the first, second, third, fourth, and fifth nearest neighbors, respec-
tively, of the first entry A. The number within the parenthesis
under each sample indicates the mutual neighborhood value be-
tween that sample and the first sample in that row.
B is the first NN of A according to the first row, and A is the

third NN of B according to the second row. Therefore, MNV
between A and B is (1 + 3) or 4. Hence, 4 is written below B in
row 1 and below A in row 2. Similarly, C is the second NN of A
according to row 1, and A is the first NN of C according to row 3.
Therefore, the MNV between A and C is 3, and hence 3 is written
below C in row 1 and below A in row 3. It is quite possible that,
for the neighborhood width k (here k = 5) considered, two
samples may not be found in each other's neighborhood row. For
example, according to row 7, C is the first NN of G. But according
to row 3, G is not among the five NN's of C. Therefore, G and C
are not mutual neighbors for the neighborhood width k = 5. So,
some arbitrary large number (greater than 2k), let us say 100, is
written below C in row 7.
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III. COMPUTATIONAL ASPECTS

Algorithm

The clustering algorithm proceeds as follows.
Step 1: For each sample in the data set {X1, X2 , XN}, find

the k nearest neighbors using the Eucidean distance measure, and
form an integer matrix MI with N rows and (k + 1) columns. We
have observed that a value of k = 5 is appropriate for disceming
moderately strong clusters. In such a neighborhood matrix, the
first entry in each row indicates the sample under consideration,
the second entry indicates the first nearest neighbor, the third
entry indicates the second nearest neighbor, and so on until the
(k + 1)th entry indicates the kth nearest neighbor.

Step 2: Set up an integer matrix M2 with N rows and (k + 1)
columns, where an entry in the ith row and jth column is the
MNV between samples at (i. 1) and (i, j) in matrix MI. If two
samples are not mutual neighbors for a given neighborhood width
k, write their MNV as an arbitrary number greater than 2k.

Step 3: Let A initially represent the whole sample set and B the
null set. Let T (T < 2k) be the threshold of the MNV chosen for
carrying out the first stage of the disaggregative process. Strong or
weak clusters will be obtained depending on the value of T
chosen. Select X E A randomly, and make B = B + X and
A = A - X. Find all the mutual nearest neighbors (with
MNV < T) of X using the matrices M1 and M2. Add them to B,
and delete them from A. Now consider the second element in B,
and find all its mutual nearest neighbors (with MNV < T) using
Ml and M2. Out of them assign all those that are not already
present in B to B, and delete them from A. This procedure is
repeated for the third and subsequent elements in B. When no
element in B presents itself for consideration, the first bifurcation
is complete, and the set B now represents the first cluster that has
been sifted from the whole sample set.
The set A, presently, comprises samples that will be con-

sidered for further division. So B is made the null set 0, a new
sample X belonging to the present set A is randomly selected, and
a new set B is grown as before to obtain the second cluster. The
first stage of the procedure terminates when A becomes the null
set.

Step 4: If we are interested in still stronger clusters, we can
embark on the subdivision of each of the groups already sifted.
This can be accomplished by choosing a lower value of T and
repeating Step 3 with the assumption that the set A now consists
of the group that is to be subdivided in this second stage. The
procedure is not iterative as the matrices M1 and M2 are formed
only once, and the clusters are sifted using these two matrices.
The entire algorithm can be written in a succinct form as

follows.

1) Set up matrices M1 and M2. Choose an MNV threshold T
(T < 2k). Let A represent the whole sample set.

2) Make B = 0, where 0 is the null set.
3) Let L= 1.
4) Choose X E A randomly, COUNT= 1.
5) A = A - X, B = B + X.
6) Let Y be the Lth element of B.
7) Using matrices M1 and M2, find J (J < k) numbers of

mutual neighbors (with MNV < T), {X1, X2, XJ}, of Y
where {X1, X2, ..., XJ} 0 B.

8) A=AA{Xl, X2? ' , XJ}, B = B +{X1, X2, , XJ}
9) COUNT = COUNT + J.

10) L = L+ 1.

11) If L is greater than COUNT, then go to 12), else go to 6).
12) Store the samples in B as the elements of one cluster.
13) If A = 0? then go to 14), else go to 2).
14) If still stronger clusters are desired, then reduce T, take the

group to be further subdivided as A, and go to 2). else END
of algorithm.

Memory Requirement
Matrices Ml and M2 are sufficient to carry out the divisive

process, and no distances need be stored. Ml and M2 together
require a memory of (2k + 2)N, and other bookkeeping arrays
require a memory of about 6N. So the major memory requirement
for the implementation of this algorithm is of the order of
(2k + 8)N. A neighborhood width of k = 5 with an MNV thres-
hold of T- 10 is found to be quite adequate for discerning
moderately strong clusters. For k = 5. for example, the major
memory requirement is about 18N.

Discerning Stronger Clusters
If the investigator feels that the selection of an MNV threshold

T = 10 has not yielded sufficiently strong clusters, then the exist-
ing clusters can be further subdivided to obtain stronger clusters
by using a smaller value of T for the divisive process.

Discerning Weaker Clusters
If the matrices M1 and M2 are generated taking k = 5, then the

maximum value of T that can be selected for the divisive process is
10. Although k = 5 is sufficient for discerning moderately strong
clusters, it is preferable to generate Ml and M2 taking a higher
value of k. This facilitates the selection of an MNV threshold
higher than 10 for discerning comparatively weaker clusters with-
out the need to start all over again. But a price has to be paid
in terms of storage requirements.

IV. EXAMPLES
Nagy [19] and Zahn [20] have indicated typical cluster prob-

lems. According to Nagy, the major difficulties in cluster analysis
are

1) unequal cluster populations,
2) bridges between clusters,
3) nonspherical clusters,
4) linearly nonseparable clusters.

Keeping this in mind, several data sets were generated manually.
To bring out the efficacy of the proposed algorithm, a number of
divisive clustering expenments were performed using this data.
The results of the simulation done on the IBM 360/44 computer
are interesting.
The expected number of clusters was assumed to be unknown

for the analysis of the data sets. The application of our algorithm,
for a neighborhood width of k = 5 and T = 2k, yielded the
number of clusters and members belonging to each cluster.
The first example consists of a data set with tight as well as

loose groups having substantially unequal cluster populations (2,
3, 5, 10, 15, 15, 25, and 50). The samples marked "I" in Fig. 2(a)
represent the members of the first cluster resulting from the first
division. The samples marked as '"0" represent the remaining
samples to be clustered in subsequent divisions. The members
belonging to the second cluster, resulting from the second divi-
sion, are represented by "2" in Fig. 2(b). Fig. 2(c) shows all eight
clusters after the termination of the divisive process.
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The clustering results for the second example are shown in Fig.
3, where the data set consists of two nonspherical chain-like
groups.
The data set considered in the third example consists of one

spherical group flanked by two nonspherical groups. The results
are shown in Fig. 4.
The data set of the fourth example consists of an irregularly

shaped high-density group surrounded by a population of low
density. The results are shown in Fig. 5.

In the fifth example, the data set consists of groups with
smoothly varying nonhomogeneous cluster densities with high
densities near vhere the clusters approach each other. The results
are shown in Fig. 6.
The data set of the sixth example consists of two distinct groups

with a low-density bridge between them. The results are shown in
Fig. 7, where the bridge appears as a separate cluster with two
members.
The seventh example consists of a data set which is almost

similar to that of example 6. But here the density of the bridge is
high. The results are shown in Fig. 8. It is evident that the two
distinct groups merge into a single cluster because of the high-
density bridge.
The eighth example illustrates the discerning of strong or weak

clusters by generating the matrices Ml and M2 taking a higher
neighborhood width. Fig. 9(a) depicts the clustering results for an
MNV threshold of T = 10. The data set now appears as consisting
of three moderately strong clusters. If the disaggregative process is
carried out using T = 16, then two clusters (one moderately
strong and the other weak) are obtained as shown in Fig. 9(b). If
T is increased to 28, the data set appears as consisting of single
weak cluster. This is shown in Fig. 9(c).
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CONCLUSIONS
A new similarity measure, called the mutual neighborhood

value, is defined. The MNV between any two samples is the sum
of the conventional nearest neighbor ranks of these two samples,
with respect to each other. A nonparametric, hierarchical, disag-
gregative clustering algorithm, based on the MNV, is developed.
It is found that the algorithm is simple, noniterative, has low
storage requirements, and is suitable for large sample size. The
expected number of clusters need not be specified beforehand, and
the clustering results are independent of the order in which the
samples are processed. Strong or weak clusters can be discerned
by changing the neighborhood width k. The application of the
algorithm to a number of clustering problems has evinced its
efficacy to discern difficult cases such as 1) nonspherical clusters,
2) linearly nonseparable clusters, 3) clusters with unequal popula-
tions, and 4) clusters with low-density bridges between them.
The MNV is better than the ordinary distance for the similarity

measure because the former invokes two-way nearness and hence
possesses the capacity to avoid the possibility of clustering a
sparse group with a dense group. In a situation such as that shown
in Fig. 5, where there are sparse and dense groups, the proposed
method appears simpler than Zahn's method.
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A Note on the Use of Second-Order Gray-Level
Statistics for nTreshold Selection

NARENDRA AHUJA AND AZRIEL ROSENFELD, FELLOW, IEEE

Abstract-The gray-level histogram of an image is commonly
used as an aid in selecting thresholds for segmenting the image.
Various methods have been proposed for transforming the histogram
so as to make threshold selection easier. This note describes a class of
such methods that makes use of second-order gray-level statistics to
define improved histograms.

I. INTRODUCTION

If an image contains dark objects on a light background or vice
versa, its histogram (a plot of how often each gray level occurs in
the image) may contain two peaks, representing the populations

Manuscript received June 29, 1978; revised August 30, 1978. This work was sup-
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of object and background points, separated by a valley corre-
sponding to the intermediate gray levels (which occur less
frequently, primarily on object/background borders). If we thres-
hold the image at a gray level near the bottom of this valley, the
objects and background should be well separated. However, the
valley bottom is sometimes difficult to locate.

Several methods have been proposed for transforming the histo-
gram so that the valley is deepened, or is converted into a peak,
with the result that good thresholds may become easier to select.
These methods generally make use of edge value (e.g., gray-level
gradient magnitude) in conjunction with the gray level itself. For
example, if we histogram the gray levels only for those image
points that have low edge value, we should obtain a deeper valley,
since we are (hopefully) suppressing points that lie on
object/background borders, and keeping primarily points that lie
in the interiors. On the other hand, if we make a histogram of the
gray levels of points that have high edge value, the valley should
turn into a peak, since these points should primarily lie on bor-
ders. A number of methods of this type are reviewed in [1].

This note describes an alternative approach to histogram trans-
formation, based on second-order gray-level statistics rather than
on edge values. In tests on the same images used in [1], this
approach gave somewhat better results.

It should be pointed out that the methods described here do not
actually select a threshold, but only produce an improved histo-
gram. In [2], a method of selecting thresholds to minimize the
"busyness" of the thresholded image (which can be computed
from the original image's second-order gray-level statistics) is
described.
The gray-level cooccurrence matrices (or gray-tone spatial

dependency matrices) used here and in [2] have been used by a
number of investigators as a basis for computing textural proper-
ties of images; see, for example, [3].

II. APPROACH

Given an image I and a displacement vector (=- (Ax, Ay), we
define the gray-level cooccurrence matrix corresponding to ( as the
matrix M6 whose (i, j) element is the number of times that a point
having gray level j occurs in I in position 6 relative to a point
having gray level i. In particular, let

M = M(0 1) + M1OM + M(o, 1 + Me 1.0);
thus the (i, j) element of M is the number of times that gray levelj
occurs as a neighbor of gray level i in I. Note that M is symmetric,
since if gray levels (i, j) occur in relative position (1, 0), then levels
(j, i) occur in relative position (- 1, 0), and similarly for (0, 1) and
(0, -1).

Distance from the main diagonal in M corresponds to absolute
gray-level difference; on the diagonal we have i j, or

= 0, while in the upper right (and lower left) corner,
i is maximal. If the edge value at a point P is low, P cannot

differ much in gray level from any of its neighbors, so that the
(point, neighbor) pairs involving P contribute to near-diagonal
elements of M. Conversely, if P has high edge value, at least some
of its pairs contribute to elements of M that lie far from the
diagonal.
These remarks suggest that we can use M to define histogram

transformations analogous to those based on edge values that
were described in Section 1. In particular, if we can define a
modified histogram based only on the points that contribute to
near-diagonal elements of M, then this histogram should pri-
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