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Bayesian Classification in a Time-Varying Environment
PHILIP H. SWAIN, MEMBER, IEEE

Abstract The problem of classifying a pattern based on multiple
observations made in a time-varying environment is dealt with. Ihe
identity of the pattern may itself change. A Bayesian solution is
derived, after which the conditions of the physical situation are
invoked to produce a "cascade" classifier modeL Experimental
results based on remote sensing data illustrate the effectiveness of the
classifier.

INTRODUCTION
We pose the following pattern classification problem: a series of

observations is made on a pattern in a time-varying environment.
The identity of the pattern itself may change. It is desired to
classify the pattern after the current observation is made, drawing
on information derived from earlier observations plus knowledge
about the statistical behavior of the environment.

Manuscript received May 5, 1978; revised July 24, 1978. This work was supported
in part by NASA Contract NAS9-14970.
The author is with the School of Electrical Engineering and the Laboratory for

Applications of Remote Sensing, Purdue University, West Lafayette, IN 47907.

An example of such a situation arises in remote sensing applica-
tions in which the sensor system can make multiple passes over
the same ground area [1]. The identity of the ground cover may
change between passes. In general, it is desired to determine the
current identity of the ground cover, but past observations can be
helpful in accomplishing the identification.

APPROACH
The classification strategy we shall develop is a Bayes optimal

(minimum risk) strategy [2]. In the ordinary single observation
case, the approach is to select a decision rule so as to minimize the
conditional average loss

m

Lx(ti) = E Aijp(wj X),
j=1

(1)

where

X n-variate observation (feature) vector,
{(j, j = 1, 2, ., m} set of m classes,
Aij cost resulting from classifying into class i

a pattern actually from class j, and
p(ij X) conditional probability that, given obser-

vation X, its class is ,oj.
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That is, Lx(wi) is the expected loss incurred if an observation X is
classified as coi. Commonly [2], Aij is taken to be the "0-1 loss
function," i.e.,

A O=0, i =i (no cost for correct classification)
i 1, i ¢ j (unit cost for an error).

Then (1) becomes

L,(wi) = 1-p(coi X), (2)

and an appropriate decision rule which will minimize Lx(wo) is

decide X E oi, if and only if

p(X w5j)p(woj) = max p(X ojj)p(ojj), (3)
j

where p(X woi) is the probability density function for the observa-
tions associated with class w)i and p(o.j) is the a priori probability
of class oij. Thus the set of products {p(X wj)p((w)1), i = 1, 2, ., m}
is a set of discriminant functions for the classification problem.
We now generalize this Bayes optimal approach to the case of a

series of observations. It will be convenient to assume that obser-
vations are made at two times. Generalization to a larger number
of observation times is straightforward.

Let XI = X(t1) and X2 = X(t2) be n-variate random vectors,
the pattern observations at times t1 and t2, respectively.

Let {vi = Vi(tI) i = 1, 2, -, m } be the set of possible classes at
time t1, and let {wOi = #(t2) i = 1, 2, , m2} be the set of possible
classes at time t2.
We define a compound conditional average loss

m2

LxIX2()i)-= E i.jp(wjlXI, X2), (4)
j=t

where A)j is the cost resulting from classifying into class i, at time
t2, a pattern actually from class j. In this case p(coj X 1, X2) is the a
posteriori probability that, given the observations X1 at time t,
and X2 at time t2, the class of the pattern at time t2 is COi.
Once again assuming a "041 loss function," (4) becomes

LX1X2(wl)i) = I - (t)I Xi, X2), (5)

which is minimized if we choose oi to maximize the a posteriori
probability P((Oi X1, X2). Thus an appropriate set of discriminant
functions for a Bayes optimal classification strategy is the set of a
posteriori probabilities; i.e.,

{p(Cw, XI X2), i = 1, 2, > m2}.

As usual, however, we wish to derive a set of equivalent discri-
minant functions expressed in terms of class-conditional density
functions and a priori probabilities as in (3). This may be accom-
plished proceeding as follows. First we write

p(W XI, X2) P(X(X, X2) (6)

For fixed XI and X2, the denominator in (6) is constant. Let
c = 1/p(X1, X2) and write (6) as

P(OIX1, X2) = Cp(Co, X1, X2)
= cE p(X1, X2, V, (0)

= C E p(X1, X2 v, W)p(v, w)
v

= C E P(X1, X21 V, (,)P((t V)p(V). (7)

The summation is over the classes which can occur at time t,. The
factor p(Xl, X2 v, co) is a joint class-conditional density; p(wo v)
may be interpreted as a transition probability (the probability
that the class is co at time t2 given the class was v at time tI); and
p(v) is an a priori probability.
Thus the multiobservational decision rule analogous to (3) is

decide X2 e wJi, if and only if
ml

Z P(X1, X2 1'k, (Oi)P(W Vk)P(Vk)
k= I

ml

- max I P(X 1, X2 1Vk (ij)P((Oj Vk)P(Vk),jk=1
(8)

and the set of discriminant functions is the set of sums of
products:

I1 p(X 1, X21 Vk, (w)p(wi Vk)P(Vk), = 1, 2, *, m2 (9)

A "CASCADE" IMPLEMENTATION
In practice, the terms in the discriminant functions must be

estimated from "training samples." The most formidable job is
estimating the ml m2 joint class-conditional densities p(X5,
X2 Vk, oi), each of which is of dimension 2N1.1 Clearly, a large
number of training samples will be required. When certain
approximations can be justified, the situation is eased con-
siderably. We shall now show that these approximations lead to a
rather attractive model for a multitemporal classifier.
We are accustomed to assuming class-conditional indepen-

dence in the spatial domain; i.e., given the class at a particular
point, the random variable which is the measurement vector at
that point is independent of the class or measurement vector at
any other point. Applying this same idea to multitemporal meas-
urements at a given point, we say that given the classes 'k at t1 and
oi at t2, the random variables XI and X2 are independent. Then
we can write

p(X 1, X2 Vk, t)i) - p(X II Vk, w-i)P(X2 1'k,'(Di),
and furthermore,

P(X I| Vk, Ji) '- P(X1 | Vk)

P(X21| Vk, C)i) - p(X21 O)i)-

(10)

(11)

Imposing these conditions, it follows that

P(X1, X2 | Vk, 0i) = p(X I Vk)P(X 2 (<i)*

The discriminant functions in (9) then become

ImlI

Pp(X I Vk)p(X2 Oi)P(iI Vk)P(Vk), i = 1, 2, M2 (12
k=1 mF (2

From (12) we can model the discriminant function calculations as

indicated in Fig. 1, from which we derive the term "cascade
classifier" to describe this multistage classifier.

SIMULATION AND EXPERIMENTAL RESULTS

The cascade classifier model was programmed and applied to

the analysis of a set of Landsat multispectral data. The data,
collected by the satellite on two successive passes, 18 days apart.

The observation vectors need not be of the same dimensionality. If XA hias ni
components and X2 has n2 components, the p(X,, X2 x (t) is N-variate, where
N = n1 + n2
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Prior Transition
Data Probabilities Data Probabilities

x, =x(t,) pw) x2= X(t2) P(WI-V)

I P(Xl,vl,) p(,V,) E P(X I'Vl) P(X2lUl) P(W1 ) V)

Likelihood .Likelihood .
Cornputer P(X,ivrr,) P(Vrn) Computer E P(xll,,) P(X2IW1Wm2) P(W" 21,) Kw) c~dcsion

m, products m2 sums (M2 = no of classes at time W)
(ml-no of classes
at time t,)

NOTE may classify here
(select classes having maximum product)

Fig. 1. Cascade classifier model.

TABLE I
TEST RESULTS FOR CLASSIFICATION OF
THE FAYETTE COUNTY, IL, DATA

(a) June 29, 1973 data

No. of
Samples

186
100
227
44

Percent
Correct

65.1
40.0
82.4
72.7

No. of Samples Classified into
CORN OTHERS SOYBEAN WOODS

121 36 24 5
33 40 22 5
10 30 187 0
0 4 8 32

E

TOTAL 557 164

OVERALL PERFORMANCE = 68.2 percent correct

110 241 42

(b) July 17, 1973

-- Corn Other SObears Woods Overall

EDJune 29 data
0July 17 data
EMuttitenporal (coscade)

Fig. 2. Test results for Fayette County, IL, data.

Group

CORN
OTHERS
SOYBEAN
WOODS

No. of
Samples

186
100
227
44

TOTAL 557

OVERALL PERFORMANCE =

Percent
Correct

89.2
45.0
73.6
5 6. 8

No. of Samples Classified Into
CORN OTHERS SOYBEAN WOODS

166
38
24
4

16
45
36
9

15
167

6

3
2
0

25

232 106 189 30

72.4 percent correct

(c) Multitemporal results (cascade classifier)

samples, independent of the training samples, were used to evalu-
ate the results. As shown in Table I(a) and (b), the performance of
this conventional maximum likelihood classifier was 68 percent
correct for the June 29, 1973 data, and 72 percent correct for the
July 17, 1973 data.
To implement the cascade analysis, it was assumed unlikely

that the ground cover would change identity over so short a time
span. Accordingly, the transition probabilities were estimated as
follows:

No. of Samples Classified Into
CORN OTHER SOYBEAN WOODS

168 11 4 3
29 48 20 3
3 10 214 0
0 5 2 37

200 74 240 4 3

P(G)i Vk) = 0.8, for wOi Vk, (13a)

and all other transition probabilities were set equal and such that

(13b)E P(oi v'k) = 0.2.
M i vS

OVERALL PERFORMANCE = 83.8 percent correct

over Fayette County, IL (see Table I), were geometrically
registered at Purdue University's Laboratory for Applications of
Remote Sensing. The objective of the analysis was to discriminate
among the ground cover classes "corn," "soybeans," "woods," and
"other," where the last category was simply a catchall consisting
of water, pasture, fallow, and other relatively minor ground
covers. Each class was actually decomposed in the analysis
process into a union of subclasses, each having a data distribution
describable as approximately multivariate normal.2
To provide a baseline for comparison, the data from each of the

passes was first analyzed separately. The a priori probabilities of
the classes were approximated as being equal, and 557 test

2 All probability densities were assumed to be multivariate normal (Gaussian),
characterized by mean vector and covariance matrix.

Again the a priori probabilities were assumed equal, and the same
test samples were used to evaluate the results.
The results of this multitemporal classification, Table I(c), were

substantially better than either of the unitemporal analyses. The
overall results were 84 percent correct. In addition, the perfor-
mance for each class was better than the best attained for the class
in either of the unitemporal analyses. The unitemporal and multi-
temporal results are compared in Fig. 2.
The results can be sensitive, however, to the specification of the

transition probabilities and a priori probabilities. This is
demonstrated in the following experiment.

Landsat data from two passes over Grant County, KS, were

analyzed in a manner similar to that used for the Fayette County
data. In this case, the two passes were separated by more than two
months, and a different set of classes was involved (Table II). The
transition probabilities were specified as in (13a) and (13b); equal
a priori probabilities were assumed.

Group

CORN
OTHERS
SOYBEAN
WOODS

No. of
Samples

186
100
227
44

Group

CORN
OTHERS
SOYBEAN
WOODS

TOTAL

Percent
Correct

9 0. 3
48.0
94. 3
84.1

557
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TABLE II
TEST RESULTS FOR CLASSIFICATION OF
THE GRANT COUNTY, KS, DATA

(a) May 9, 1974

No. of Percent No. of Samples Classified Into
Group Samples Correct ALFALFA CORN FALLOW PASTURE WHEAT

ALFALFA
CORN
FALLOW
PASTURE
WHEAT

58
428
526

1513
913

TOTAL 3455

Overall Performance =

84.5 49
57.0 0
54.4 0
52.6 127
82.5 97

0
244
196
148
17

0
183
286
220

0

0
1

36
796
49

100

90

80
a)
L 700

C 60
a)

&? 50
9
0
8

227
767

273 605 689 882 1006

62.0 percent correct

(b) July 20, 1974

I.
x

N
N
N
NNNNN
N
N
N
NN
N I /

/

Alfalfa Corn Fallow Pasture Wheat Overall

P May 9 data E3 Multitemporal (cascade)
C July 20 data E2 Cascade with modified weghts

Fig. 3. Test results for Grant County, KS, data.

Group
No. of Percent No. of Samples Classified Into
Samples Correct ALFALFA CORN FALLOW PASTURE WHEAT

ALFALFA 58 5.2 3
CORN 428 53.0 15
FALLOW 526 62.9 0
PASTURE 1513 42.4 64
WHEAT 913 76.2 22

TOTAL 3455 104

Overall Performance - 55.3 percent correct

3
227
113
329
108

780

I
105
331
213
33

682

10
15
5

641
58

729

42
66
77

266
709

1160

(c) Multitemporal results (cascade classifier)

No. of Percent Number of samples classified Into
Group Samples Correct ALFALFA CORN FALLOW PASTURE WHEAT

ALFALFA 58 41.4 24 0 0 2 32
CORN 428 59.6 5 255 165 1 2
FALLOW 526 76.4 0 107 402 2 15
PASTURE 1513 46.3 101 205 224 701 282
WHEAT 930 88.3 77 19 0 13 821

TOTAL 3455 207

Overall Performance = 63.8 percent correct

586 791 719 1152

As shown in Table II and Fig. 3, in this case the overall perfor-
mance of the multitemporal cascade classifier was only marginally
better than the best unitemporal result. A closer look at the class-
by-class results is revealing. The largest detractors from the multi-
temporal results were the classes "alfalfa" and "pasture." In both
of these cases, the unitemporal results for the second pass were

substantially lower than those obtained in the first pass. (There
are physical explanations for why this is reasonable, but this is not
germane to our exploration of classifier behavior.)

Let us examine the impact that the relatively arbitrary assign-
ment of transition probabilities has on the classification results. In

case the actual transition probabilities are not known (which was

true for the cited examples), the assignment can be made any-

where between two extremes. On the one hand, it could be

assumed that

P(Ji Vk) k = 1, 2,,ml,

i.e., equiprobable transitions. Then the discriminant functions
have the form
ml 1

E p(X1 |Vk)p(X2j|i) p(Vk)
k=l m1

1Ml
=- 021| ji) E P(XlI| Vk)P(Vk)

p(X2 JI1)p(X )

Since 1/ml and p(Xi) will be common to each of the discriminant
functions, the decision will depend only on p(X2 wcoi) and will be

independent of the first-stage results.

TABLE III
CASCADE CLASSIFIER RESULTS FOR ADJUSTED TRANSITION

PROBABILITIES (GRANT COUNTY DATA)
No. of Percent Number of samples classified Into

Group Samples Correct ALFALFA CORN FALLOW PASTURE WHEAT

ALFALFA 58 94.8 55 0 0 0 3
CORN 428 70.3 5 301 122 0 0
FALLOW 526 68.1 0 139 358 7 22
PASTURE 1513 48.1 105 211 195 727 275
WHEAT 930 89.1 82 9 0 10 829

TOTAL 3455 247 660 675 744 1129

Overall Performance = 65.7 percent correct

On the other hand, we could make p(w, v,) = 1 and
p(coi vj) = 0, j i. Then the discriminant functions become

p(X1 Vi)p(X2 (0i)p(Vi).
Thus, in a sense, the contributions from the two stages are
weighted equally. There is no way to make the first stage input
dominate the second stage.

In view of these considerations, another classification of the
Grant County data was performed. In this case, the transition
probabilities p(woi vi) were set equal to unity for the "alfalfa" and
",pasture" classes in order to give as much strength as possible to
the first stage results. Table III and Fig. 3 show the outcome of
this classification. The confusing influence resulting from the
second stage data has been reduced.

It is interesting to compare the results obtained using the
cascade classifier to results produced by a "conventional" maxi-
mum likelihood classifier using all of the multitemporal features
simultaneously. To perform the latter classifications, equal a priori
probabilities were assumed. The results were:

Fayette County 80.8 percent correct,
Grant County 64.1 percent correct.

It is curious that neither of these results is any better than the
cascade classifier results achieved. It is possible that these slightly
poorer results represent the price paid for having to estimate
eight-dimensional statistics as opposed to four-dimensional stat-

istics in the face of limited training data.

DISCUSSION AND CONCLUSIONS

The approach we have adopted for classifying data in a nonsta-

tionary environment was based on application of classical statisti-
cal decision theory in a straightforward manner. However, we

used the conditions of the problem to approximate some of the
statistical quantities involved. This step simplified the interdepen-
dencies of the data involved and led to a "cascade classifier"
model. In the time-varying environment, this model is seen to

1) successfully incorporate the temporal information in the
classification process, resulting in improved classification
accuracy;

x,, ..A,-41 ---YA r-].TI

.
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2) reduce the dimensionality of the probabilty functions used
and thereby make less stringent demands with respect to the
size of the training set required; and

3) facilitate distribution of the computational load over time.
Each time a set of observations becomes available, discriminant

functions are calculated which can be used, if desired, to make a
classification. However, the values of the discriminant functions
are also passed along and contribute to a new set of discriminant
functions calculated when the next set of observations is obtained.
Although we have demonstrated the use of the cascade model
only for the case of two stages, extension to an arbitrary number
of stages presents no difficulty.
The prospective user of this approach should be aware that a

casual implementation of the likelihood computers may result in
computational difficulties of two sorts: loss of precision and very
large computation times as compared with, let us say, a conven-
tional Gaussian maximum likelihood classifier. Both of these
difficulties can be overcome, or at least substantially reduced, by
appropriate measures (scaling, ignoring zero terms, etc.) in carry-
ing out the likelihood computations.

Finally, we have said nothing about how the transition probabi-
lities might be obtained in practice. Certainly the transition prob-
abilities will depend on the specific application under
consideration, but conceptually they should be no harder to
obtain than the prior probabilities used by "conventional" maxi-
mum likelihood classification (and by the first of the cascaded
stages, for that matter). They may be estimated from historical
observations, from ground sampling, or from observation of areas
having similar ground cover and utilization.
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Image Restoration Utilizing Spatial Masking of
the Visual System
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Abstract-The fact that the visual system masks details near
high-contrast edges is utilized in the design of filters for the restora-
tion of blurred images. Psychophysically measured visibility func-
tions are used to determine the size of oscillations that are allowed in
an edge response. Filters are obtained that correspond to an edge
response of the highest slope subject to this psychophysical
constraint. Examples of the restoration of one- and two-dimensional
images blurred by diffraction are discussed.
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I. INTRODUCTION
The human visual system is usually the final stage of systems

that involve coding, transmission, enhancement, or restoration of
pictures. Many efforts have been dedicated to the incorporation of
some aspects of the complex properties of the visual channel in the
design of these systems. In this correspondence, we present some
results on the restoration of blurred images using a criterion of
fidelity that involves the spatial masking effect in the vicinity of
high-contrast edges.
The spatial masking effect has been the subject of many experi-

mental studies by visual scientists [1]-[7]. Its importance in the
efficient coding of pictures [8] and in the elimination of noise in
images [9] has been realized. We extend these studies to the prob-
lem of restoring images that are blurred by known amounts and
that are to be viewed by human observers from fixed distances.
We limit ourselves to linear restorations, and we use the

method of restoration by superposition of images [10]-[14]. In
this method, the restored image at a certain position is taken as a
weighted sum of the values of the measured image at a finite
number of points surrounding that position. The weights, which
determine the restoration filter, are chosen to satisfy some criter-
ion of fidelity. Usually the point spread function (PSF) of the
restoration system (i.e., the system that relates the restored object
to the true object) is made as narrow as possible without contain-
ing large sidelobes [10]. If the image contains noise, the weights
may be chosen to minimize the variance of the noise in the
restored image [11]. In this correspondence, we are interested in
pictures that contain high-contrast edges. The quality of a restora-
tion scheme depends largely on how well the edges are restored. It
is therefore more appropriate to consider the unit-step response of
the restoration system. A unit-step function corresponds to a per-fect edge. Success in restoring the edge is measured by the slope of
the edge response at the position of the edge. But, as is known, an
increase in this slope is always accompanied by ringing or oscilla-
tion effects on both sides of the edge. Those oscillations cause an
unpleasant subjective appearance of the image. An optimum
trade-off between the sharpness of the edge and the amplitude of
these oscillations depends on subjective factors as well as on the
nature of the picture to be restored.
At this point we utilize the masking property of the visual

system. Details in the vicinity of the edge will not be perceived bythe viewer. Although present, these ringing oscillations are
masked or attenuated in the viewer's visual system. If such oscilla-
tions are not visible, why eliminate them at the expense of a
reduction in the sharpness of the edge? The masking effect there-
fore sets our criterion for the amplitude of the permissible oscilla-
tions and consequently decides the optimum restoration weights.

In Section II, we discuss the masking effect. In Section III we
formulate the restoration problem. Numerical examples of one-
and two-dimensional systems blurred by diffraction are presentedin Section IV.

II. THE EDGE MASKING EFFECT
In general, masking is defined as the action of one visual sti-

mulus (primary stimulus) on the visibility of another (secondarystimulus) [1]-[7]. In our case, the primary stimulus is a high-contrast edge (Fig. 1(a)), and the secondary is some small detail
located in the vicinity of the edge. It is known that the visibility of
the secondary stimulus increases exponentially as a function of the
distance from the edge [1]-[7]. The effect increases with the con-
trast and sharpness of the edge. In order to use the masking
property in the design of filters for image restoration, knowledgeof the actual dependence of the visibility on the distance is neces-
sary. We have therefore performed some psychophysical experi-
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