
CORRESPONDENCE

Similarly, the functions fp, gpf, and hp5 are separable so that (B3)
decouples into np independent subproblems

max fli(xpi, yp) subject to g,i(xpi, yp) = 0
Xpi

Thus under the assumption (B9), Vf(4*) is perpendicular to the
null space of dg(4*). And since f is concave, 4* maximizes f(x)
subject to g(x) = 0. Q.E.D.
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~~+L.,, --nA f- +11 -. e1.k-+when the levels of the interactions y1 are fixed. As in the linear
case, the interaction levels in one decomposition are fixed by the
values of the decision variables selected in the other decomposi-
tion, that is,

y= hp(Pp,5x) and Ya = h2(Pax#).
The following analysis is in Hilbert spaces. We assume f is a

real-valued function on a Hilbert space ( and the functions g, ha,
and hp are transformations between Hilbert spaces. Also, Pa and
P, are bounded linear transformations and bijections between
Hilbert spaces. Direct substitution shows that the problems

maxf(x) subject to g(x) = 0 and h2(P x) = ya (B6)
x

and
maxf(x) subject to g(x) = 0 and hp(Ppx) = jr# (B7)
x

are equivalent as defined in Appendix A to the problems (B2) and
(B3), respectively, with the interaction levels fixed at ya= yA and
y# = 4. It should be apparent that Properties 1 and 2 are directly
applicable to the nonlinear case.

Property 1': If the strategy (Si)-S4)) is begun with a feasible
value of x, that is, g(x) = 0, then at each stage n of the iteration
process the problems (B6) and (B7) have nonempty feasible
domains.

Property 2': Let fOP = max f(x) subject to g(x) = 0, and sup-
pose the sequences {¢,j and {Ji} are such that

Qa maximizes f (x) subject to T2(x) = T( ,n -')
d, maximizes f(x) subject to T,(x) = ( (B8)

for all n > 0 where

T77(x) g(h(x)) and T#(x) = (x)

then both conditions i) and ii) of (A3) are valid.
Property 3': Assume f is concave and both f and g are Frechet

differentiable and the constraints of both problems (B6) and (B7)
are regular. Furthermore, assume

X(dg(x)) = X(dT.(x)) + X(dT1(x)) (B9)
where X(.) denotes the null space of (.) and dg(x), dT2(x), and
dT0(x) are the Frechet differentials of g, Ta, and T,B at x. If the
sequences {i,} and {4f,} satisfy (B8), then any accumulation point
4* of either sequence solves (B1).

Proof: Let 4* be an accumulation point of {a} where the se-
quences {4an} and {i} satisfy (B8). Define the real-valued functions
F2 and F on T:

F(x))-max {f (x): T77(x) - Ta) = O}

Fp(x) max {f (x): Tp(x) - T() = 0}.
Then both F2 and F are lower semicontinuous on 2, and it
follows (see proof of Property 3) that 4* maximizesf (x) subject to
T,(x) - T(*) = 0 and T#(x) - T#(4*) = 0. Consequently, Vf(4*)
is perpendicular to both the null space of dT,(4*) and dT,6(,*).

tnis paper anu ior tneir vaiuaose comments.
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Stabilization of Linear Time-Invariant Interconnected
Systems Using Local State Feedback
M. EROL SEZER AND OZAY HOSEYIN

Abstract The stability of composite systems formed by an
arbitrary linear interconnection of linear time-invariant subsystems
is investigated. It is shown that the composite system can be made
stable using local state feedback with moderate gains around the
subsystems (but not from one to another), provided that each
subsystem is controllable.

I. INTRODUCTION
Recently there has been a lot of work on the stability of compo-

site systems. Some of these works aim completely at analysis and
give necessary and/or sufficient conditions in terms of lower order
subsystems and their interconnections for the composite system to
be stable (see, for example, [1] and [2]). Some others aim at design
and investigate the possibility of stabilizing a composite system
using constant or dynamic output feedback or state feedback (see,
for example, [3]-[6]). Among these, Davison [5] has shown in an
elegant way that an arbitrary interconnection of nonlinear time-
varying unknown single-input-single-output systems having a
particular structure can be stabilized using high-gain local state
feedback. However, as in the case of all nonlinear time-varying
problems, his procedure leads to extremely high feedback gains
that are naturally much more than necessary for a linear time-
invariant system. Except for the above references, [7] and [8] in-
clude various studies on the stability and stabilization of
interconnected systems.

In this correspondence, the stability of a composite system
formed by interconnecting a number of linear time-invariant
multivariable systems is considered. It is shown that such a com-
posite system can be stabilized using local state feedback with
moderate gains provided that all the subsystems are controllable.
Although it is possible to stabilize the composite system using
state feedback by considering the whole system as a single control-
lable multivariable system, it is usually desirable to control each
system without requiring any knowledge about the other systems.
The procedure offered here not only stabilizes the composite
system, but also guarantees system stability under any possible
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failure conditions that might occur in the interconnections.
Moreover, if a composite system formed by single-input-single-
output subsystems is considered and the results are compared
with those of Davison [5], it is observed that the procedure of this
paper leads to much smaller feedback gains (see example 2), which
are just sufficient to stabilize the composite system.

II. PROBLEM STATEMENT

Consider the collection of N subsystems represented by

Si: x, = Aixi + B,ui,

i-1, 2, , N,

r - - -,
r- --. F1 =,

L. - - --> XIxL' 1~~~~~~~~~~~~~~~~~~i
r.7g -af S

rF--, l x2L--- F2 -J
(1)

where xi E #i is the state, ui e *'i is the input, and yi E 9P is the
output of the ith subsystem Si. The matrices Ai, Bi, and Ci
(i = 1, , N) are constant and of appropriate dimensions. Let
these subsystems be interconnected according to

N

ui = vi + E Gijyj, i-=1, 2, -, N, (2)
j*1

where vi E W'i is the external control input to Si, Gij E jfixi are
the interconnection matrices, and the second term on the right
side of (2) represents the aggregate interaction inputs to Si from
other subsystems. The composite system formed by the above
interconnection can then be described by

X = (A + BGC)x + Bv (3)

where

X = column [xI, , XN]
v = column [V1, , VN]
A = block diag [A1, ... AN]
B = block diag [B1, ... BNI
C = block diag [C1, ... CN]

and

[0 G '''GIN
G- G2 1 ° . G2N

GN 1 GN2 °

The problem considered in this correspondence is to find local
state feedback rules such that if

vi = wi + FiXi

Y2

Fig. 1. General composite system consisting of two subsystems with local state
feedback compensation.

Lemma 1: Let a(s) and p(s) be monic polynomials where the
zeros of p(s) are all in the open left-half complex plane % -. Let q(s)
be any polynomial such that

deg {a(s)} + deg {p(s)} > deg {q(s)}.

Then the coefficients of a(s) can be chosen so that all the zeros of
h(s) = a(s)p(s) + q(s) are in W-

Proof: Let

a(s) = s + a,s + .+ an

= sn + a, x(s)

where oa(s) is a monic polynomial with deg {a(s)} = n - 1. Then

h(s) = s"p(s) + q(s) + a, cx(s)p(s).
Now consider the case when a, oo. Since

deg {snp(S) + q(s)} = deg {a(s)p(s)} + 1,

the well-known result of the classical root-locus technique [9]
indicates that one zero of h(s) approaches to - , while the re-
maining zeros approach to those of a(s)p(s). Since the zeros of p(s)
are in IC, choosing the zeros of ax(s) in 'Y;- and making a,
sufficiently large, the result follows.
Lemma 2: The theorem is true for N = 2.

Proof: For N = 2, the composite system in (5) takes the form

Al + B1 F, B, G12C2 [B
X -=[B2G21C A2 +B2F2

x + B2JW (6)
(4)

where wi E #Ri is the reference input of Si and Fi E 4#mJ"i is the
local feedback matrix, then the resulting composite system

x = (A + BF + BGC)x + Bw (5)

is stable, where

w = column [w1, '" , WN]

F = block diag [F1, --7, FN].

The block diagram of a composite system consisting of N = 2
subsystems is shown in Fig. 1 together with the local compensat-
ing state feedback matrices.

III. MAIN RESULT

Theorem: Let each subsystem Si described by (1) be control-
lable. Then it is possible to choose the local state feedback
matrices Fi in (4) such that the resulting composite system
described by (5) is stable.
To prove the theorem the following lemmas are needed.

Let F1 be chosen such that all the eigenvalues of
Al = A1 + Bs Fi are in W- [10].

Let the coordinate transformation A2 = T2-A2 T2,
B2 = T2 1B2, C2 - C2 T2 bring the pair (A2, B2) into Luenberger
canonical form [11], i.e., if P21 > P22 > '.. > P212 are the control-
lability indices of the pair (A2, B2), then

A21 1 A21M2] [B2 1

A2 B2 ~~~~~~~~~~ID2,
A ... ~A2MMiB M

C2 [C21 2m2]

where

A2jJ- [7% 2j.]

A2jk = -T E XP2j P2k

B2J = [eIea9p2JXm2

(7)

(8a)

(8b)

(8c)
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DE2"'2 is a nonsingular matrix, a'jk are row vectors, and er
is the jth row of the unit matrix I-2. Let

F2= D-1IF2T2- (9)

where F2 is partitioned as

F2 = [F21 F2M21J (10)

Now choose F2k such that

A2jk + B2jF2k = 0, (11)
* T

i.e., -a2jk + eJTF2k = 0, for all]j k, k = 1, M,i2. Thus all rows
of F2k are fixed except the kth row. Let

-T T - ~ T
-a2kk + ekF2k =-a2kk, k = 1, S, M2. (12)

Then using (7)-(12) in (6), it follows that

A + BGC + BF

A1

B21 D2 G21 Cl

-B2M2 D2 G21 Cl

B G,72i ... BI G12 e2M2
A211 ... 0

0 ... A2m2m2
A

where - denotes matrix similarity and the A2jj have the same
form as A2jj except that the -_a?jT are replaced by -aT
j = 1, , M2. Now define

A B,G12C21 ...B G2C
B21D2G21Cl A21°I 0

B2jD2G21Cl 0 ... A2jj
j= 1, ,m2, (14)

and
dj(s)= IsI -Pjl, 1= 1, ,m2- (15)

Note that Pm2 ' A + BGC + BF. It can be shown using elemen-
tary column operations that

sI- A1 -B1GI2c2i(s)
dj(s) = -eTD2G21 C1 a2ii(s)

[-eTD2G2iCl 0

where

and

*. -B1 G12 C2j(S)
... 0

*-- a2jj(s)

a2kk(S) = S + a2kkT k = , ...,

sP2k- 1

1

C2k(S) = C2k | k = 1, i2.

SP2k- I

It follows from (12) that the coefficients of a2kk(S) can be chosen

arbitrarily by selecting the kth row of F2k properly. We shall now

show by induction that it is possible to choose the coefficients of

the a2kk(S), k = 1, , M2, so that each dj(s), = 1, , iM2, has
zeros all in (6-.

a) For j = 1,

si-A1 -B1G12 21(S)

d(s)=| -CTD2G21Cl a2lI(S)

'''ll(s)lsI-A'l + E _2Si- A I
-efD2G21 C

-B1G12 21(S)
0

Then the result follows from Lemma 1 on identifying h2 1(S)=
a(s), IsI - i, = p(s), and the second term in (17) as q(s).

b) Assume that the coefficients of a2jJ(S), i = 1, , k - 1, are
chosen such that the zeros of dk; I(s) are all in -. Now writing
dk(s) as the sum of a2kk(S)dk- (s) and a lower degree polynomial as
in case (i), the proof follows from Lemma 1. This completes the
induction step and the proof.

Proof of the Theorem: The proof is given by induction on N.

a) N=2: Lemma 2.
b) Assume that any composite system formed by interconnect-

ing k - 1 subsystems can be stabilized using local state feedback
in the subsystems. Then a composite system formed by intercon-
necting k subsystems can be considered as an interconnection of
any one of the subsystems with the subcomposite system formed
by the remaining k - 1 subsystems, and the proof follows from
Lemma 2.

Remarks
1) Consider the proof of Lemma 1. Suppose that the

coefficients of q(s) take values in finite known intervals, but are
not known exactly. In this case, it is still possible to guarantee that
the zeros of h(s) are in W- for all permissible values of the
coefficients of q(s), provided that a1 is chosen sufficiently large.
Since q(s) takes into account the effect of interconnections in the
proof of Lemma 2, it follows that the composite system can be
stabilized independently of the interconnection gains provided
that they are bounded. This ensures that some of the subsystems
can safely be disconnected without driving the composite system
into instability.

2) If all the subsystems are controllable, then clearly the com-
posite system formed by the interconnection in (2) is also control-
lable. Hence it is possible to find a state feedback rule that
stabilizes the composite system. But in this case, since the feed-
back matrix becomes dependent on the interconnection matrix G,
the above robustness property of the composite system is lost. In
fact, with this procedure each isolated subsystem is made stable.
This might not be achieved by considering the whole composite
system as a single system and using state feedback.

3) Although the proof of Lemma 2 provides an algorithm for
the selection of the local feedback matrices, it presents difficulties
when the interconnection gains are not known exactly. A separate
algorithm based on a trial and error method is given in section IV.

4) Although there seems to be a relation between the above
results and the results of Milne [12] on weak coupling, it is not
necessary for the eigenvalues of the subsystems to differ in magni-
tude greatly as in weak coupling.

IV. AN ALGORITHM FOR THE SELECTION OF THE
LOCAL STATE FEEDBACK MATRICES

A careful inspection of the proofs of Lemmas 1 and 2 shows that
the stabilization procedure is based on placing the eigenvalues of
the subsystems sufficiently far from the imaginary axis so that the
interconnections become ineffective in the compensated system
characteristic polynomial. The following algorithm presented uses
this fact, which first selects the compensated subsystem
eigenvalues and then checks the effect of interconnections. If the
interconnections are seen to be effective, a different choice for
the compensated subsystem eigenvalues is made, and
the procedure is repeated until satisfactory results are obtained.
The algorithm is based on a method developed by Paraskevo-

poulos for pole assignment using constant output feedback [13],
[14]. A slight modification of this method shows that, if the pair
(A, B) is in Luenberger controllable canonical form [11] with
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controllability indices P1 . P2 >... > pm and if there exists a
transformation such that

Q '(A + BF)Q= H (18)

where H is any matrix, then Q is of the formL T
qTHP1-1

(19).T
qm

qHPm- 1

Conversely, the state feedback matrix F that makes the matrix
A + BF similar to any given matrix H is given by

F = (BTB)- 'BT(QHQ-1 - A) (20)

where Q is any nonsingular matrix of the form (19).

The Algorithm
1) Using the transformation Ai = T-'A, i;, Ai = T- 'Bi,

Ci = Ci T1, i = 1, N, bring the pair (Ai, Bi) into Luenberger
controllable canonical form. Let the controllability indices of the
pair (Ai, Ai) be piI > ... pi,

2) Choose

H il

Hi ='
I i= 1, ,N, (21)

~i.jli
where )jj, j= 1, , ni, are the eigenvalues of the compensated
subsystem Si, i = 1, , N.

3) Choose q,,q** , c 11 xI, i = 1, , N, such that
T

qlm

T I1

are nonsingular.

Fig. 2. Composite system of Example 1.

Remarks
A possible choice for Hi and qTj = 1, , mi, which guarantees

the nonsingularity of Qi and also simplifies calculations, is

Hi = diag [Hi,, ', Him1] (25)

where each Hij, j= 1,, mi, is diagonal and has distinct
eigenvalues, and

qiT = [0 .. 0*-l 1 ... 0 0]. (26)

jth block having
P1j I's

This choice of Hi and q1T,j = 1, , mi, results in a block diagonal
Qi that can be inverted much more easily than a full Qi.

V. EXAMPLES

Example 1

Consider the composite system shown in Fig. 2 where the
subsystems are described by

: A, [-2 -j B [jI c [°

-10 0
S2: A2 2 4-0 0

1 1 0

B2 =[1 2], C2 =[1 0 1],
0 1

S3: A3 = _ 29 B3 = I2, C3 [I[1O,
4) Let T = diag [T,, , TN] and Q = diag [Q1, , QN]. Then,

HI Qj 1B1 G12 C2 Q2
QI2Q'B2G21 CiQ, H2

A = Q 'T-I (A + BGC + BF)TQ =

L QN'_NGN.C2Q1 QK.B.G_2C2Q21-QN- 1BNGN1 Cl Q 1 QN BN GN2 C2 Q2..

Qi 'B, GINCNQN 1

Q2'B2G2N CN QN (22)

HN -

5) Check if A in (22) is diagonal dominant [15] for all permis- and the nonzero interconnection matrices are given as
sible values of the interconnection gains. If so, determine the local
feedback matrices Fi from . _ n- r_- [9211 9212

Fi = (iAT,i)-'AYT(QiHi,QF'-_i)T-
= D (Q Q A-)T-

where

Qi=[ 1TT-aT -aT
qi 1 HP" -a I.1 -a,,,,,

qiT H4mi -aTil IaT[P
I -Ti yn -i

(23)

(24)

and the aiTk are defined in (8a) and (8b) for i = 2. If is not

dominant, or cannot be made dominant by scaling its rows and
columns, choose another set of Hi, and repeat steps 2)-5).

'12 - l121, '-'2 1
9213 g214

G g231 G__- 9311 g312
2

g232 j 9313 g314

where

|9ij|<k1.

Letting

T, [
1T2°[ 1 0] T3 I2,

(27)
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the subsystems are transformed into

0=[-1 - 0]2 B2 ] 4

C2=[1 0 0]

S3:A3=A3, B3=B3, C3=C3.

Letting

H,= -6] Q1 |2 -6]

H 2 -_-15 1 _Q2= -5 -15

H3 - - --jl Q3= 12,

the composite system matrix in (22) becomes

[ -2 aX21 a122 0
-6 L'Xi 3 (124 0

a2l1 2212 -5 231 0
A-X213 -214 1 15223 0
a215 0(216 15 O233 0
0(311 1312 -15
a313 1314 ?5

where (27) guarantees that

IX12iI<0.25, i=1, ,4,
a(211, 1 IO21l31 < 1.5, 1(212 1, L214 I!<5.1,
a2151 < 5, JCa2i6 < 17,

a0(2311, Ia232I10.3, |a233j <!- 1,
311 L23131 <.5, X3121, 103141 < 17.

Multiplying 3rd, 5th, 6th, and 7th rows of A respectively by 2 £1,
i, and 8; and corresponding columns by their reciprocals, and
letting e 22 O, 0 it is seen that A becomes row dominant.
Now the required local feedback matrices are obtained from

(23) as

F = [-10 5],

-82 - 16 -74F2 = 4 ° °

-15 -1IF3 = I I.

Note that robust stabilization is achieved without requiring exces-
sively large local feedback gains.

Example 2
Consider the feedback connected single-loop systems shown in

Fig. 3 where

S1: A1 = [0 1 b = [ = P[1 1],

0 0[
S2:- A2-= O 1 , b2 = O , C2 =[I I 1],

O 1 0 1

Fig. 3. Composite system of Example 2.

and 1912,19211< 1. Davison [5] assumes feedback matrices of
the form

F1 = [p4 2p2], F2 = [p3 3p2 3p],

where a lower bound for the parameter p is obtained as p > 486,
for the composite system to be stable. Using the algorithm of
Section IV, it can be shown that

F1 [-3 -4], F2 =[-32 -45 -13],
which results in

H=1- -4 H2=i

-4L -4-8

are sufficient for stability. Note that the above feedback matrices
involve much smaller gains than those obtained using Davison's
results. The reason is quite clear: Davison's procedure does not
differentiate between linear and nonlinear or time-varying and
time-invariant systems and is based on forcing the system under
consideration to behave as a model system. To achieve this, he
assumes a predetermined form for the feedback gains, which does
not depend on the actual system parameters.

Example 3

Consider the hydraulic system shown in Fig. 4, where

hj liquid level in the jth tank,
qJ inflow rate to the jth tank,
qo rate of flow from the jth tank to the next,
Chj hydraulic capacitance of the jth tank, and
Rhj hydraulic resistance of the jth valve.

The equations describing the dynamic behavior of the tanks can
be obtained as

Chj Ahj=Aq + Aq%. -Aq, j-=1 N,

AqJ= JAh -Aj+l ?) , 11 , N- 1,
Ahj

AhNAqo = 0, Aqo =ARs

where Ahj, Aq', and Aqj denote incremental deviations from the
steady-state values. Letting

y-xx1Ahj, vj = Aqj, and uj = vj + Aqj 1-Aq,

the system of Fig. 4 can be modeled as a composite system where
the subsystems are described by

Sj: XC Ui
y hj

yj xj,
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1 q2 qN

Fig. 4. Hydraulic composite system of Example 3.

and the interconnection gains are given by

1

(Rhj-l + Rhj) , ,N

Gll=-
Rhl

Rhj1Gjj =-, j=2,, N-1

Rhj

Note that the above model is slightly different from the composite
system model in (5) in that it involves self-interaction terms Gjj
that do not appear in (5). This, however, is not important in
achieving robust stabilization as can be seen from the algorithm.
The significance of Gjj terms is that they take into account some of
the system parameters that may be changed during operation.

It can be shown that, the above system is always stable for all
values of Chj and Rhj. However, depending on the relative values
of Ch, and Rh; there is a certain amount of interaction among the
subsystems. Our aim is to reduce this interaction using high-gain
local state feedback by making the A matrix highly dominant.
As a typical example, let N = 3 and the system parameters at

the operating point be Chj = 1m2, Rhj = 5 min/m2, j = 1, 2, 3. It
can be shown that without any compensation, the steady-state
changes in Ah1, Ah2, and Ah3 for a step input applied to S2 are in
proportion to 1:1: 1. Letting

vj= wj-Fjxj, Fj= 1 m2/min, j= 1, 2, 3,

the above ratios become I :1: 7, for a step input W2 . Moreover, the
above ratios do not change considerably as Rhj are changed from
5 min/M2 to cOC.

VI. CONCLUSIONS

It is shown that any composite system formed by interconnect-
ing a number of multivariable systems can be stabilized using
local state feedback with relatively small gains. Moreover, proper
selection of the feedback matrices guarantees system stability
under any possible failure conditions in the interconnection
matrices. An algorithm is given for the selection of local state
feedback matrices and is applied to three examples. Although the
algorithm is based on a trial and error approach, an experienced
designer can reach a satisfactory result after few trials. The
examples show that robust stabilization of the composite system
can be achieved without using excessively high feedback gains.
The model chosen to represent a composite system is suitable

for a nontrivial class of composite systems; an example is the
hydraulic composite system considered in Example 3. Never-
theless, the method given in this correspondence can be used in

stabilizing some other composite system models such as the one
considered in [16].
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A Generalized Fuzzy-Set Theory

SATOSI WATANABE, FELLOW, IEEE

Abstract-In the Zadehian version of the fuzzy-set theory, the
exact values of the membership (or grade) functions play a crucial
role. In the generalized fuzzy-set theory, the exact values of the
membership function, in general, no longer matter much; yet their
logical structure remains essentially the same as in the ordinary
fuzzy-set theory. The generalized fuzziness must be considered just as
undeterminable as in the ordinary fuzzy-set theory.

I. INTRODUCTION

In addition to some other complaints [1], the following three
points must be mentioned as shortcomings of the fuzzy-set theory
as proposed by Zadeh [2]. 1) There is no way of determining the
value of the membership function, either rationally or empirically.
2) In spite of this undecidedness, the implication relation'
depends on a hair-splitting difference of the values of the two
membership functions involved. 3) The minimum-maximum rules
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I It is called "containment" in Zadeh's paper. In his newer paper, another notion of

implication is introduced, but this one depends on the so-called fuzzy-set theory of

type 2 and therefore requires a separate scrutiny.
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