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felt that models of this type can be applied more efficiently to
general service bureaus since university centers must operate
under unique conditions. Be that as it may, it should be
remembered that the simulation presented here is based on the
assumption that decision process does not change during sim-
ulated intervals. This fact does not lessen the value of SD.
The detail program list of this simulation is available from the

authors.
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Relaxation Processes for Scene Labeling:
Convergence, Speed, and Stability
STEVEN W. ZUCKER, MEMBER, IEEE,

E. V. KRISHNAMURTHY, AND ROBERT L. HAAR

Abstract-Relaxation labeling processes are techniques for reduc-
ing local ambiguities. They are currently being used in a number of
applications, especially within computer-based vision systems. This
paper studies theoretical aspects ofthe probabilistic rule used in these
processes to iteratively evaluate local evidence. In particular, the
convergence properties of the rule are studied and techniques for
improving the speed of convergence are described. These results are
supported by examples.

I. INTRODUCTION
Relaxation labeling processes are a class of iterative, parallel

techniques for using contextual information to reduce local ambi-
guities [1], [2]. Such techniques have been found to be useful in
many applications, with emphasis to date on their applications in
vision systems (e.g., [3]-[10]; see the overview of applications
in [2]).

There are several different ways in which relaxation labeling
processes can be approached. One possibility is to consider them
as providing a framework for using heuristic knowledge, and then
to evaluate both their performance in specific applications and
their usefulness within larger "understanding" systems. In this
correspondence, however, we consider a different aspect of these
processes: namely, certain mathematical properties of the rule
used for combining local evidence. In light of the number of cur-
rent applications of relaxation labeling processes, such a theoreti-
cal study would certainly seem to be warranted.
In an earlier paper, a formal description of these processes was

suggested [1]. This description included both discrete and probab-
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ilistic models for the way in which interactions could occur. While
it was possible to study one of these models mathematically (the
discrete model), only empirical results on the iterative behavior of
the probabilistic updating algorithm have so far been obtained.'
This correspondence is concerned with the abstract study of the
convergence properties of the probabilistic algorithm. It attempts
to characterize the conditions under which the algorithm will
converge as well as the nature of the terminal states. Furthermore,
it leads to a possible scheme for improving the speed of conver-
gence and to considerations about the stability of these processes.
The model for relaxation labeling processes in [1] was mo-

tivated by a class of problems arising within the field of scene
analysis or image understanding. Suppose, for example, that at
one level of processing there are a set of objects ai, i = 1, 2, *, n,
with a specified neighbor relation holding over this set. Attached
to each of the objects is a set of labels 1j,j = 1, 2, m, where
each label indicates a possible interpretative assertion about that
object. For example, the objects might be vertices in a line draw-
ing, and the labels indicators of the underlying physical edge
configuration [9]. Or. at a lower level, the objects might be picture
points and the labels assertions about whether the points are part
of line or curve elements [3]. Then the relaxation algorithm
attempts to use constraint or compatibility relationships defined
over pairs of labels (possible interpretations) attached to neigh-
boring objects in order to eliminate inconsistent or unlikely com-
binations of labels. This effectively reduces the number of labels
attached to each object until only locally consistent label sets
remain.

Labels can be attached to objects either in an all-or-none fash-
ion, in which they are either possible or impossible (the discrete
model), or they can have a measure of likelihood or confidence
associated with them. This latter case is referred to as the probabi-
listic model because the likelihood can be interpreted as an esti-
mate of the probability that a label A is appropriate for an object
ai. This measure will be denoted by pi(A).
In the discrete model, constraint relations indicate which neigh-

boring pairs of labels are allowable. Operating on all the objects
in parallel, the algorithm then discards labels (from the initial
label set of each object) which are not consistent (i.e., do not form
an allowable pair) with at least one of the labels residing on each
of the neighboring objects. For a more detailed discussion of this
algorithm, see [1].

In the probabilistic model, the probability estimates for an
object's labels are updated on the basis of the probabilities dis-
tributed over the label sets on neighboring objects. These probabil-
ities interact through a set of compatibility functions defined over
pairs of labels on neighboring objects. More specifically, the com-
patibility of label A on object ai with label A' on object aj will be
denoted by r#(A,A'). Compatibilities assume values in the range
[- 1,1] according to the following criteria:

1,
rij(A,A') = f O,

- 1,

if A at ai is highly compatible with A' at aj;
if A at ai is independent of A' at aj;
if A at ai is incompatible with A' at aj.

Of course, intermediate values of the compatibility functions are
possible. It is these compatibilities which provide the means for
incorporating heuristic knowledge into the process (see the
discussion in [2]).

' For a related study of a restricted relaxation process embedded within a heuristic
search, see [10, appendix A-1].
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The initial probabilities are obtained either by performing a
measurement of some sort or, in the absence of any a posteriori
information, are assigned uniform values. Each probability is then
updated by a rule of the form

pek+ 1)(,) = F(pk)(i); q(k)(i))

where k is the iteration number and q(k)(A) denotes the neighbor-
hood contribution. In this correspondence we shall consider the
class of updating rules which can be modeled by the following
updating formula (for further motivation behind this rule, see [1]):

(~k +)1 ) p/k) (Q)[1 + q,k)()]
Pt (A)

E pk)()[l + q(k)(i)]
A

(1)2

where
()= Cij Eri#,A)pek(A').

The coefficients (Cij) represent a possible weighting over the
neighboring objects aj and insure that qi is in the range [- 1,1].
This rule is used to update the probability of each label on each
object in parallel, and is then iterated until no further changes
occur.

In order to study the conditions under which this rule iterates
to a stable value, it is useful to first translate it into a matrix
representation. Then the theory of iterative matrix processes can
be used both to examine questions of boundedness and conver-
gence, and also to suggest techniques for accelerating the rate of
convergence.

II. MATRIX FORMULATION OF THE PROBABILISTIC
RELAXATION PROCESS

A. Definitions and Notation

The local updating rule (1) can be written as a matrix process in
the following way. Recall that there are m possible labels for each
object, and let p(k) be an (m x m) diagonal matrix with diagonal
elements p k)(Qj) for j = 1, 2, m, . Similarly, let Q(k) be an (m x m)
diagonal matrix with elements q)k)(Aj) for j = 1, 2, , m. Thus

.(k (A)
ptk) = 0

0

q(k)Q~(Al)

Q(k) = O

O

P k)(, ) 0

..

q(k)(22 ) * * ' k°

0 .. q(kI (jm)

Each of the P matrices is defined for each object ai, i = 1, 2, , n,
and the resulting n matrices are combined into a global (mn x mn)
diagonal matrix with n blocks of (m x m) diagonal matrices p(k).
Thus

( k)

p(k) = O

O

... 0

... .

O.P(k )

2 While this updating scheme is rather simple in that it uses only a weighted sum of

the neighboring label probabilities to update a given probability, such simple
schemes appear to be rich enough to model a variety of real applications, ranging

from line drawing interpretation to curve enhancement. Furthermore, most of the

algebraic results derived in this paper only require the neighborhood contributions

q"(A)(), not the explicit scheme for calculating them.

The global neighborhood contribution matrix QIk is, similarly, ail
(mn x mn) diagonal matrix with ni blocks of (m x m) diagonal
matrices Qik):

0( Q' k 0

Q(k ) =2t

() ..*. Q(k)

As a standard reference on matrix analysis, see [11].

B. Matrix Iterative Model

Using these definitions, the iterative sequence (1) can be written
in matrix form for each object ai:

p(k +1) = p(k)[I + Q(k)](Pk))- 1
I IL xIj 1 (2a)

where Tk) is an (m x m) diagonal matrix with elements
t(k) = trace {p!k)[j + QV')]} and I is the identity matrix of order
(m x m). Here P(O) represents our initial estimate of the label
probabilities for object i.
The matrix iterative sequence can also be written in the global

form (where each pk consists of blocks of Pk)

p(k+1) = p(k)[I + Q(k)](T,k)) 1I

where Tk) is an (mn x mn) diagonal matrix with elements

t(k= trace {p(k)[J + Q(k)]}

for j = (i-l)m + 1 to im, and where I is the identity matrix of
order (mn x mn).
We can now give a physical interpretation of the recursions (2).

In our matrix notation, it is clear that the iteration process has no
effect on a p(k) matrix in which each PIk) submatrix has only one
nonzero diagonal element of value unity. Such a PI" matrix will be
called a unique interpretation matrix (UIM). It corresponds to
each object having a unique label with probability 1, and all other
labels of that object having probability 0. From a Markov process
point of view, a UIM corresponds to an absorbing state.

C. Convergence Criteria and Fixed Points

A matrix iterative sequence such as (2a) is said to be convergent
(or to define a contractive mapping) if it has limiting points.
We will now discuss the convergence criteria for a specific i

(i = 1, 2, , n). Since each p(k) is composed of the pIk) blocks, and
the Q(k) matrix is also appropriately blocked, the convergence of
p(k) follows from the argument for convergence of each of the P,k
matrices.

In order to discuss the convergence criteria we need to associate
with any vector or matrix A (say) a single nonnegative scalar that
in some sense provides a measure of its magnitude. We will use the
Euclidean norm defined by

Al = (E E a.j)'2

which is the sum of squares of the matrix elements ai3. Clearly,
Al = 0 if and only if A is a zero matrix.

It is well known [I1] that all norms are equivalent, in the sense

that if the sequence

X(°) -X X'1) - x x,n)
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vanishes in the limit, with respect to any one norm, then the same
is true with respect to any other norm. Likewise, a sequence that is
bounded in one norm is bounded in every norm.
We see that sequence (2a) starts with an initial approximation

P(O) (where 1IP 0) and computes successive iterates

p(l) =P-°l[I + Q(0)1(vO))-
p(2) = p(l)[I + Q(1 ](TP1) I

- IPS[I + Q(0)](7l0T) [I + Q1)1](¶'o))-1
and so on with

k-1
p(k) - p(O) 1. [I + Q!P)](7r))- 1

r =0

and
kp(k+ 1) = P(O)i!O [I + Q 1

r=O

= p(k)[I + Q(k)](Tk))- I

LABLL set =

LABELLING A TRIANGLE

xI: occluding edge: forward object
below

edge: forward object
above

(3)

(4)

(5)

(6)

Therefore, using our concept of norm we can say that the seq-
uence (6) converges if JP(k+ 1) Pk)11 vanishes in the limit as
k oo, or

lim ||P¶k+1)PpIk,=I 0.
k -oct

In terms of practical computation, this is tantamount to

jp(k+1) _ p9k) 1 <E

for sufficiently large values of k, where E is a small positive number
depending upon the precision used in our calculations.

Using (6), we see that for convergence we require

lim ||p{k+ 1) p(k)jj

= lim (fPp)[(I + Q(k))(TPk)) -I 0 (7)li-x(7

P1 (11) -

P 2)
P1 (A3)

Pi (14) .

P3 ( A 3 )
P3 (q4)

ptA1) p(A2) p(A3) p(A4)
SIDE 1

SIDE 2

SIDE 3

Fig. 1. Labeling a triangle.

Given that the process converges, we have

[p(k+1) - pek)] = O (i.e. <

In terms of matrix elements, this implies

Pt (AJ-) p!i( -1+(k)(A I3- 0-.Tj)[ + qme)(Aj)]
This means

Now, clearly, 0 < 1pPk) 11 < 1 for each k = 0, 1, 2, -., n. (Note
that trace p(k) = 1 for all k by the definition of the sequence (2a).)
Hence the sequence (2a) is bounded or nonexpansive. We will
now show that 1) in the following cases the sequence converges
and 2) if the sequence converges, then one of the following cases
result.
Case 1: p¶k)Q.1) 7 0 for all i and j and Qk = flI, where ,B is a

scalar (including zero).
Case 2: p (k)(A) - 0 for some (but not all) a, 1 < a < j. The

corresponding q (k)(A,) are arbitrary, however the remaining
q(k)(Aj) (a scalar, including zero) for j .

Case 3: p(k)(A,,) = 1 for exactly one value of] =a, 1 < cx j, and
p(k)Ai) =0 for oca. This corresponds to the case in which p(k) is

a UIM.
By substituting the values of p(k)(Aj) and q k)(Aj) listed above, we

can easily verify that these cases correspond to stationary points
for the process (2a).
To prove that when the process converges, these or their com-

binations are the only stationary points, we consider the individ-
ual elements of

[p(k+ 1) _ p(k)] = p(k)[(J + Qk)(7) 1

1 + q(k)(i)j- E p(k)(Aj)[l + q,k)(Aj)]

for p(k)(Aj) ¢ 0. Since Ej pEk)(".) = 1, we obtain

q8k)(Aj), = pZk)(2 )q))(2j

Since this expression is a constant it corresponds to the Case 1,
viz., Qk)A

Ifp(k,) - 0 for some a, (1 < < j), then the requirement that
the bracketed expression in (8) must be equal to zero implies that

q(k)(Aj) ptc)(A.j)q k)(Aj

-,B3(a scalar), j c,a.
This further implies that the qtk)(,G) can be arbitrary, which corre-
sponds to Case 2.
A particular example of this occurs when p(k)(Aj) = 0 for all j

except one value j-ot, for which ptk)(A) = 1. This is a UIM which
corresponds to Case 3.

D. Examples of Convergence
In order to give examples of these classes of fixed points, for

continuity with earlier work we shall use the example described in

(8)

43



IEEE TRANSACTIONS ON SYSTEMS. MANX AN\) (YBERNETICS V(OL. SM(C- Not 1 JAN' AR<Y 197V8

TABLE I
CORRELATION BETWEEN LABELS FOR THE

TRIANGLE LABELING EXAMPLE

CoruL I
) = .467

Cor(X1,>.2) = -.600

Cor(A1,x 3) - .488

Cor(X1i,4) = -.293

Cor(A 2P X1) -.600

Cor(A2,X2)2 . 4 6 7

Cor(X 2t A3 -.293

Cor( 2,Nx4) .488

Cor(A 3' A1 .488

Cor( 3, 2) -.293

Cor(X 3 tX3 -.143

Cor(N3,x4 -.143

Cor( 4,N1) - -. 293

Cor ( N4 N2)

Cor( 4, 3)

.488

-. 143

linear function of the number of iterations, we say that thie process
exhibits linear convergence. While the theoretical rate of cotiver-
gence of (2) depends upon the initial choice of M1' as well as on
the R and C matrices, experimentally it appears to exhibit a linlear
convergence. Therefore, it is necessary to improve the speed of
such a scheme by a modification of the iterative sequence. This
modification should be such that 1) probability vectors are
mapped into probability vectors, 2) the stationary points are the
UIM's, and 3) the speed of convergence is geometric. Thlis can be
accomplished by a sequence of the form

p(k+ 1) _ (p(k) (I± Q(k))1(lk))- I (9)
where x is a positive integer and Thk is the diagonal matrix whose
elements are all equal to trace (p(k))i(i + Q|k))2. To show that se-
quence (9) satisfies the above properties, we note first that

fll + 1 < 1, since trace pk + 1 = 1 for all k. Therefore, the sequence
(9) is bounded. As before, a sufficient condition for convergence is
that

li 1p'k + 1) _ p'k)

= lim 11(pik))7(I + Qik))1(lk)) -1 p(k) 0

k-'x
Cor ( 4, 4) = -.143

[1], which involves labeling a line drawing of a triangle. That is,
given a line drawing of a triangle, we wish to determine the phys-
ical edge configuration underlying this drawing. For simplicity, we
shall allow only four different edge configurations (see Fig. l(a)).
The compatibilities between pairs of these labels are taken as the
correlations derived in [1]; these are listed in Table I. Since each of
these labels is initially a possible interpretation for each line, the
entire label set is attached to each line. Then, beginning with a set
of initial probability estimates, the process iterates according to
(1) or (2).
To demonstrate Case 1 solutions, uniform initial probability

assignments were selected. These are represented in a matrix of
the form shown in Fig. l(c). The results of successive iterations
toward a fixed point and the corresponding qj(A) matrices are
shown in Table II. Note that the process, beginning with no bias
for any specific solution (labeling), terminates at effectively the a
priori likelihood for each label, and that the q matrix approaches
zero. This example corresponds to [1, fig. 6, case A].
The second example, shown in Table III, demonstrates a Case 3

solution. (This example corresponds to [1, fig. 6, Case G].) Begin-
ning with a slight bias toward one solution, even with potentially
contradictory evidence, it terminates with a UIM.
There are many other examples of relaxation labeling processes

applied to realistic problems that supply further empirical
evidence on the behavior of these processes (see, e.g., [2]-[6]).
Once convergence properties for a process have been deter-

mined, the question of the rate of convergence becomes impor-
tant. Indeed, for some applications, the number of iterations
required may turn out to be prohibitive. In the next section we

consider techniques for accelerating the rate of convergence.

or in terms of matrix elements

(pjk)))(l + ql
±

I (p(k)(2j))y(l + q k)(Aj)),
Ap(k) )-0

Using arguments similar to those in Section II, we can show
that for (9):

1) UIM's are stationary points;
2) cases for which pj(A) = (1 + qj(j)) = 1/m are stationary

points (note that this is a special case of the /BI case in Section III);
3) Q5k) 0 is not a stationary point unless p(k) is a UIM.
We next show that sequence (9) has a geometrical rate of

convergence. In other words, if sequence (6) takes k steps to
converge, then sequence (9) would only take [log, k] steps. Since

p)k+i) = p(k)(j + Q(k))(.Fkl)- 1

we can approximate the (k + s)th step by

p(k +s)
= [p,k)(I + Q,k))(rPk)) 1]. (10)

Sequence (10) offers a sort of extrapolation to speed up (6) by
carrying it over to the (k + s)th step. However, it lacks the
property that trace p(k+s)l 1. In order to take care of this we

approximate

(z pek)(,j)(l + k)( ))

by

(z (p k)(Aj))s(1 + q!k(A)))

thus obtaining the sequence

p(k +s) = (p(ki)sij + Qkk)y](7k))- 1

III. IMPROVING THE SPEED OF CONVERGENCE

The order or rate of convergence of norm-reducing iterative
sequences such as (2a) is related to the deviation of the successive

iterates from the true solution. If this deviation decreases as a

where T is a matrix whose diagonal elements are trace (pIk)} x

[I + Qek)]s. It is easily seen that (11) is of the form (9); indeed

(1 1)
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TABLE II
TRIANGLE LABELING USING EQUAL INITIAL PROBABILITIES

Iteration Probabilities q matrix
number (neighborhood contributions)

0 .25 .25 25 .25
.25 .25 .25 .25
.25 .25 .25 .25

10 .295 .295 .205 .205 .007 .007 -.021 -.021
.295 .295 .205 .205 .007 .007 -.021 -.021
.295 .295 .205 .205 .007 .007 -.021 -.021

20 .321 .321 .179 .179 .004 .004 -.012 -.012
.321 .321 .179 .179 .004 .004 -.012 -.012
.321 .321 .179 .179 .004 .004 -.012 -.012

30 .335 .335 .165 .165 .002 .002 -.007 -.007
.335 .335 .165 .165 .002 .002 -.007 -.007
.335 .335 .165 .165 .002 .002 -.007 -.007

40 .343 .343 .157 .157 .001 .001 -.004 -.004
.343 .343 .157 .157 .001 .001 -.004 -.004
.343 .343 .157 .157 .001 .001 -.004 -.004

50 .347 .347 .153 .153 .000 .000 -.003 -.003
.347 .347 .153 .153 .000 .000 -.003 -.003
.347 .347 .153 .153 .000 .000 -.003 -.003

TABLE III
TRIANGLE LABELING USING UNEQUAL INITIAL PROBABILITIES

Iteration Probabilities C matrlx

number

0 .3 .2 .3 .2
.3 .2 .3 .2
.3 .2 .3

3 .402 .143 .307 .148 .143 -.126 .033 -.101
.402 .143 .307 .148 .143 -.126 .033 -.101
.402 .143 .307 .148 .143 -.126 .033 -.101

6 .583 .054 .291 .072 .283 -.262 .088 -.165
.583 .054 .291 .072 .283 -.262 .088 -.165
.583 .054 .291 .072 .283 -.262 .088 -.165

9 .771 . .007 .203 .018 .437 -.386 .140 -.209
.771 .007 .203 .018 .437 -.386 .140 -.209
.771 .007 .203 .018 .437 -.386 .140 -.209

12 .880 .000 .116 .003 .521 -.440 .216 -.220
.880 .000 .116 .003 .521 -.440 .216 -.220
.880 .000 .116 .003 .521 -.440 .216 -.220

15 .933 .000 .067 .000 .551 -.460 .281 -.225
.933 .000 .067 .000 .551 -.460 .281 -.225
.933 .000 .067 .000 .551 -.460 .281 -.225

Therefore, a single step of (9) is equivalent to a steps of (6); or, if This sequence also remains bounded, since trace Ik+l)= 1 and
we require k steps in (6) it is sufficient to perform [log, k] steps in |p(k+ 1 < 1.
(9). For instance, if a = 2, what takes 100 iterations in (6) would In order to test these suggestions for improving the rate of
take only about 7 steps in (9). convergence, the simple triangle example already described was
One could also use a more general form used again. While this example already converged fairly rapidly, it

p(k+ 1) = (p(k)y I(I + Q(k))22(-%k))- 1, X > 2, a2 > 2 can be readily seen that x = 2 and a = 3 (in recursion (l1)) yielded
even faster convergence (see Table IV).

where T1k) is a matrix whose diagonal elements are For a more realistic test a program that computes spatial lay-
outs was used (for a complete description, see [12]). This program

{trace (p(k))ai(J + Q(k))02}. translates symbolic spatial relations (such as NEAR and LEFT
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TABLE IV
SPEEDUP OF CONVERGENCE BY USING A RECURSIO)N

IV. NUMERICAL INSTABILITY

BASED ON XTH POvWERS We will now indicate some of the numerical difficulties that
might arise in using recursions (6) or (9). The types of instabilities

I terlt i onIlticrA1J 7L- 1 st ::- 2 3 may fall into the following (not necessarily exhaustive) categories.
1) Q(k) 0 in (6). Since the process is stationary for any choice

3)Bf) () ')() 'J of p(k) with trace p(k) = 1, roundoff errors would cause instability..0 70 0
.3in 0 .50 0 2) Q(k) I in (6). Here factors of the form 0/0 may arise.

These indeterminate situations can lead to large numerical
I .fi2 0 .:3F C fI, .32 (617 0 .83 o . (, .)

3 2 instabilities..17 .33 3 330 33 .92 1362 0 .38 0 6 8 0 .32 0 3) When using sequence (9), since very small numbers are

2 .8 I 0 .97 0 03 0 raised to powers, underflow or overflow may result if a is large.
.04 0 .97 o n) 1.0 0 Numerical instability is demonstrated in the triangle labeling
.85 0 15 0 .97 0 .03 0

example when a uniform initial labeling is used (see Table V). Up
3 .70 0 .30 0 .99 0 .01 0 1. 0 0 0 0 to about 60 iterations the process is slowly converging with the

.32 0 .68 0 0 0 1.0 0 n n 1 o o
.700 .30 0 .99 0 .01 0 1.0 0 0 0 q-terms becoming smaller and smaller. Suddenly,just before itera-

tion 70, the process becomes numerically unstable and begins to
6 87 0 13 0 10 rapidly toward a different fixed pOilt. Fortunatelyt.28 0 .72 0 13 0.100 converge very towrdfixdI

.87 0 .13 0 1.0 0 0 0 however, it is possible to use simple extrapolation techniques for

12 .99 0 .02 0 detecting such instabilities.
.13 0 87 0 One technique for determining whether a given sequence is

converging to a stable stationary point is to extrapolate, by any of
several well-known procedures [11], and then to compare the re-
sults. While the extrapolated sequence may not itself be stable, the
difference between the extrapolation and the original sequence

OF) between idealized objects into a probability distribution over may be sufficient for detecting instabilities.
the possible coordinate locations for the objects. The models for As an example of extrapolation, one can take the equally spaced

iterates pe~~~~m) p2man (m) an osrc h e siaeuingthe symbolic relations are embedded in the compatibility func- iterates PI, p and Pl and construct the new estimate using
tions and the label sets corresnond to Dossible coordinate loca- Aitkeni's 62 process [13]:
tions for the objects. The relaxation algorithm (2) is then used to
disambiguate the positional locations for each object, given a set
of spatial relations between pairs of objects. Beginning with a
uniform distribution of probabilities over the label set (i.e., no a
priori bias on the positions), the algorithms required a very large
number (75 to 100) of iterations before disambiguation. The dra-
matic acceleration results obtained using (11) are shown in Fig. 2
for a = 2, 3, and 4. For conciseness, rather than showing the
actual probabilities, an information measure (one minus the
entropy) is used. The information measure for object i is
computed by

pi(x,y) log pi(v,y)
!(i)-= 1 + log (IN)

where N is the number of position labels (coordinate pairs).
Note that whereas before well over a hundred iterations were

required (a 1), now only 5 or 10 are sufficient. In order to
examine the stability of this procedure, a number of different
layout configurations, some involving implicit constraints, were

computed. In each case, the resulting spatial layouts were the
same for a = 1, 2, 3, and 4.

Before using this process with a large a, however, a potential
pitfall must be mentioned. This pitfall involves the digital im-

plementation of these algorithms and the possibility of cumulative
numerical roundoff errors driving the process to an instability.
While an increase in the order of the process accelerates conver-

gence, it also introduces instability in numerical problems. This is

because products of numbers are involved which may be of sub-
stantially different magnitudes and, furthermore, powers of these
numbers are involved in the products. Thus there is a tradeoff
between the number of iterations required for termination and the
numerical stability of the process. This tradeoff must be con-
sidered individually for each application. In the next section we
discuss in more detail some guidelines for detecting numerical
instabilities.

P(3m) = p(3m)
(pi3m) _ p(2m))2

(p(3m) 2P2m) + P(m)) (12)

This extrapolated term should be a strong indicator of the direc-
tion of the process, and the difference Ptm3-3m) should indi-
cate whether an instability is encountered.

This extrapolation has been calculated for the triangle labeling
example, and the results are shown in Table V. There are other
techniques for reducing numerical problems in iterative processes,
such as using scaled variables, higher precision, and so on. While
these techniques are available if needed, it should be stressed that
in all of the realistic applications of relaxation labeling processes
to date (e.g., [2]-[6]), numerical instability has not yet been
encountered.

V. SUMMARY AND CONCLlJ'SIONS
This correspondence has considered certain mathematical

aspects of probabilistic relaxation processes. These aspects were

studied by first representing the process in an iterative matrix

form. The bounded norms of the successive P matrices im-

mediately guarantee that the process is nondivergent. Algebraic
considerations then provide a characterization of the different
ways in which the process can converge.
The two interesting types of convergence are 1) convergence to

an unambiguous interpretation matrix (UIM) in which a node has
only one possible label, and 2) convergence to an ambiguous
labeling, when the neighborhood contribution approaches a

constant. This latter case corresponds, in an intuitive sense, to the
situation in which the network contains no additional local infor-
mation suitable for further resolving ambiguities. In such cases

control should be passed to another process such as a search
procedure.
The remaining possibility for convergence (Class 2 in Section

II-C) suggests a consideration that may be important in applying
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TABLE V

Iteration Probabilities ii matrices Extraoclatea
number probabillc'ies

(K=10)

0 .25 .25 .25 .25
.25 .25 .25 .25
.2 5 .2 5 .25 .25

1D .31 .31 .19 .19 .006 .006 -.016 -.016 .35 .3D . 1, -a13
.31 .31 .19 .19 .006 .006 -.016 -.016 .35 .35 .1, .1D
.31 .31 .19 .19 .006 .006 -.016 -.016 .35 .35 .15 .15

30 .33 .33 .17 .17 .002 .002 -.007 -.007 .35 .35 .15 .15
.33 .33 .17 .17 .002 .002 -.007 -.007 .35 .35 .15 .15
.33 .33 .17 .17 .002 .002 -.007 -.007 .35 .35 .15 .15

60 .35 .35 .15 .15 -.002 .002 -.003 -.001 .35 .35 .15 .15
.35 .35 .15 .15 -.002 .002 -.003 -.001 .35 .35 .15 .15
.35 .35 .15 .15 -.002 .002 -.003 -.001 .35 .35 .15 .15

70 .29 .42 .13 .16 -.059 .059 -.031 .027 .35 .35 .15 .15
.29 .42 .13 .16 -.059 .059 -.031 .027 .35 .35 .1 .1,
.29 .42 .13 .16 -.059 .059 -.031 .027 .35 .3, .1i .1,

73 .18 .55 .10 .18 -.161 .168 -.086 .075 .35 .35 .15 .15
.18 .55 .10 .18 -.161 .168 -.086 .075 .35 .35 .1, .15
.18 .55 .10 .18 -.161 .168 -.086 .075 .35 .35 .l5 .15

relaxation labeling processes. This involves creating a balance
between the ci3 and rij and the current probability assignments.
While such situations are highly unlikely in realistic problems,
they could conceivably arise if automatic techniques for inferring
compatibilities (such as optimization techniques over a given
sample space) were used.

Since the matrix Q(k) depends upon the correlation matrix rij
and the weights cij, it is very difficult to determine the rate or
speed of convergence theoretically. However, it has been
demonstrated that sequence (9) can greatly improve the speed of
convergence. To see why this works we recall that in effect the size
of the neighborhood over which information can travel to
influence each point increases with the iteration number [2].
When the information from the next larger neighborhood is only
slightly different from the smaller neighborhood's information,
then the terms in the updating rule are almost identical. Raising
the updating rule to a power then provides an acceleration of this
slow change by lumping the effects of more than one of the orig-
inal iterations into each new iteration. The overall result of this is
to speed up the convergence.

There is a danger involved with this speedup technique,
however. Some of the ambiguous fixed points (Case 1 or Case 2
configurations) may be driven to a UIM by incorrectly biased
initial information. To circumvent this difficulty, the original
process (2) could be used for the early iterations, followed by the
higher order process (9) for the later iterations. The proper point
for conversion would then need to be determined either by a trend
analysis or on the basis of local probability distributions.

This correspondence has dealt almost exclusively with math-
ematical properties of the mechanism employed for combining
evidence in a relaxation labeling process. While the updating rule
exhibits appropriate behavior in the abstract, the entire process
must be considered before more concrete observations are
possible. In particular, one must consider the symbolic structure
of the process, i.e., the labels, their interpretations, and the graph
structure specifying their interdependence. It is generally very
difficult to study arbitrary symbol-manipulating processes in-
dependently of specific applications. However, the mechanism

underlying relaxation labeling processes is characterizable in the
abstract. Studying these processes from this point of view offers an
understanding of their behaviors complementary to that obtain-
able through applications.
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