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Suppose that in (3) and (4) we are dealing with an infinite set
of features with parameters pi, qi. The order of the features is
chosen randomly. We may consider them, therefore, as in-
dependent identically distributed. For (3) can be written

N

lim E ri - .
N-.o i= 1

If rf is the average of the first N terms, we have

lim NiN = oo.
N-a}0

This is satisfied if the limit of Fr for n -+ oo, being the expectation
of r, is positive:

Er = lim rN > 0.
N-co

Equations (3) and (4) are therefore satisfied if
J1 1

(p - q)(2p - l)F(p,q) dpdq > 0

(q - p)(2q - I)F(p,q) dpdq > 0

are satisfied. F(p,q) is the density function of the parameters.
It can be easily verified that these conditions are satisfied for
F(p,q) uniform. This implies that if an infinite number of param-
eters pi, q, are outside the regions defined by (5), (3), and (4) can
still be satisfied. The significance of the regions introduced by
Chandrasekaran and Jain in satisfying conditions (3) and (4) is
therefore not clear to us.
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Dimensionality and Classification Performance with
Independent Coordinates

JOHN W. VAN NESS, MEMBER, IEEE

Abstract-In an effort to provide better intuition about the effects of
increasing the dimension of the observation vector in discriminant
analysis, the case where the coordinates of this vector are independent
is studied. Some examples and theorems are given which clarify the issue
as to when certain results already appearing in the literature are or are

not true. A counterexample is also given showing that the divergence J
is not useful in bounding the probability of misclassification for Bayes-
type decision rules. Some general results are obtained on the benefit of
adding more independent dimensions with fixed training data size.
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I. INTRODUCTION

A very important problem frequently arising in classification
is determining how many dimensions to use. There are, of course,
stepwise procedures for variable selection and various jackknife
or reclassification techniques available for determining which set
of variables to use. All of these procedures suffer from one or
more serious defects: they are only crude approximations, they
consume enormous amounts of computer time, or they are based
on assumptions which are too restrictive, etc. Thus much work
still needs to be done on the general effects of dimension in
classification performance. Some results in this direction can be
foundin such papers as [1], [2], [6], [9], [10], [12], [14], [16],
and [I9]. There are also strategies to alleviate the high dimension
problem such as assuming all variables are independent or
assuming groups of variables are independent (see discussions in
Fisher et al. [7] and Fisher and Kronmal [8]).
A recent paper by Chandrasekaran and Jain [4] is concerned

with the effect of high dimensions when the variables are inde-
pendent, i.e., when the coordinates of the observation vectors are
independent random variables. They discuss asymptotic results
as the dimension N tends to infinity while the number of training
data vectors remains fixed and finite. This is atn interesting
problem which provides some additional intuition to the user.
Unfortunately, the authors do not provide a precise set of suffi-
cient conditions for their results to be valid and the results are
not valid in general. This correspondence clarifies this issue and
takes up some additional questions involving independent co-
ordinate variables and large dimensions. A counterexample is
given which illustrates the fact that the divergence J is not useful
for bounding the probability of misclassification when using
Bayes-type decision rules.

[I. NOTATION AND BAYES CLASSIFICATION

Suppose for convenience that the population Q. under study
consists of two disjoint classes C1 and C2, i.e., Q = C1 u C2.
Furthermore, assume that we can measure N variables on any
object w E S which is selected for measurement. If these variables
are random, the measurement vectors X = (XI, , Xn) have
as their coordinates N random variables. Thus the training data
for classification would consist of the observed vectors on, say,
ml objects from C1 and Mn2 objects from C2. We label these two
training data sets D1 and D2:

D =- {Yl *,Y,I} -

J'1N

Y"n1.1\
(Y1 NA)X I

Y,n,,NJ

D2 Z 'ZM2'
ZIN Zm2,N

where, e.g., Yl' = X'(w1) = (Xi(w1),"-X(w.)).
It is customary to assume that, if w comes from C1, then X

has a multivariate density fN, and if w comes from C2, then X is
distributed according to the multivariate density 9N,. Unless
fN # 9N, there is no information in the variables for classification.
The object of classification is to take any incoming object w,
whose class is unknown, and to correctly decide from which class
it came using its observation vector x = X(w) = (x,- ..x)',
D1 and D2, and any prior information.
There are, of course, many algorithms for making the above

classification of the unknown w. One very popular algorithm is
the Bayes decision rule. Here it is assumed that w is randomly
selected from Q where the probability that w comes from C1 is
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CORRESPONDENCE

equal to 711 and that w comes from C2 is equal to 7r2. Here 7r,
and 72 are either known to the person doing the classification or
can be estimated by the classifier. Thus we write

P{We C1} = r1, P{Wu C2} = 7Z2, 71 + 7r2 = 1.

If one knows fN, 9N, 71, and 72, the Bayes algorithm says to
classify w into that class whose posteriori probability (calculated
via Bayes' Theorem) is largest, i.e., if

is greater than

PIC, xi}= fN(X)71l
fN(X)7rl + gN(X)712

P{C2 XI
=

fN(X)7rl + gN(X)7r2
then classify w into C1, otherwise classify w into C2. In the usual
case where fN and gN are not known, they are estimated using
D1 and D2.

All of the above can easily be generalized to more than two
classes.

III. A COUNTEREXAMPLE

Assume henceforth that all N coordinates ofXare independent
random variables and, for simplicity, that 7z, = 7Z2 = 1. If fN
and gN are known, then the probability of correct classification
for the Bayes algorithm is

Pc= [P{fN(X) 2 9N(X) W E C1l}
+ P{gN(X) > fN(X) I WE C2}] (3a)

2 [p (nN(X) . 0|wECi}

+ P {ln 9NM) > OIWEC2}] (3b)

I - Pe

where Pe is called the probability of misclassification. The form
(3b) is convenient here since the coordinates ofX are independent
and we can write the densities

N

JN(x) = H f il(x)
i=1
N

gN(x) = [n g(t'(xi) (3c)

where f(i) is the density of Xi given that w e C1 and g(i) is the
density of Xi given w E C2. In [4] it is claimed that, if for almost
all x,f ('(x) g(i)(x), then

Ef ln fN(X)) 0(N)

7fN2 ln AM = O(N) (3d)

where, e.g., Ef means the expectation with respect to f. This is
not necessarily true and Chandrasekaran and Jain acknowledge
this in [5 ]. The following example gives insight into the situation.

Example 1

Suppose the sample space for all Xi is the interval [0,1 ] and
f(i)(x) = 1 for all x c [0,1 ], i = 1, * * -,N. Furthermore, let

I( + di,
g(i)(x) = I - di,

O,

O < x <s

21 < x < I
otherwise

whereG < di < 1,i= 1,-- ,N.Then

fN(X) N (1EfN,ln IX = ln gl)(xi) dxl
gN(X) =

IN

= - -E [ln (I + di) + ln (I - di)]

= - ! ln (l - di) = E a

whered1 = (1 - e-ai)1/2 and thereforeO < ai < oo. Choose a
to be any positive convergent series such as ai = i-2; then

Ef (lnfN(X)) - 0(1).

Similarly, choose ai = i and we get O(N2). Similar examples can
be found for any nontrivial range, not just [0,1 ].
Thus we see from Example I that any order (> 1) can be

achieved in (3d). If we take f(L) = f and g") = g, i = 1, * * * N,
then we get O(N) as in (3d). Intuitively, one can imagine several
possibilities as N increases. The distributions f(i) and g(l) for
large i could quickly approach one another (but stay unequal) or
diverge from one another or anything in between. Therefore, the
conclusions made [4, p. 241] about perfect discrimination are
true only under certain circumstances. Additional sufficient
conditions for the conclusions are discussed in the next section
and in [5 ].

IV. ASYMPTOTICALLY PERFECT DISCRIMINATION

What are some sufficient conditions such that under the
assumption of Section III, the algorithm will tend to have perfect
discrimination (PC = 1) as N -e oo ?

First of all, it should be noted that we are dealing with what in
information theory is called "the mean information for dis-
criminatingfin favor of g," i.e., we can write this information as

I(f:g) -Ef n f(X)Eng(X)
(see. e.g. Kullback [13, ch. 1]). Furthermore, the fact that
!(f :g) is large does not imply that I(g::f) is large.
The idea of [4] is to say that if N o c, I(ft :gN) gets large

compared with the standard deviation,

X(ln 2 12f 1/2C(~~ ~fN9N)Ey(n (X)) f :9N)]

then we could use the argument of Proposition 1 to say

tnfN(X)
P In fx(X > 08

9N(X) J

gets close to 1.
Proposition 1: If I(fN :gN)/1(fN :gN) -> cc, then the probability

of correctly classifying an object from C1 tends to one.
Proof: The probability of an error given C1 is

P (ln fAW) < 1 X
P {N(X) J

=Pi (ln fNX _ I(A:90N < -I(fN:gN) Cl

< P Iln fN(X)
9N(X)

< g(f 9N) -+0 as N -+ oc
I(fN :gN)J

by Chebyshev's inequality. Q.E.D.
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Proposition 2: Under the assumnptions of Section III,
N

I(fN: N) = (f (i): )

N
2(N: 9N) = E (f(i):9()

and similarly for I(gN: fN) and U(gN fN)-
Proof: This is well known and follows immediately from the

fact that

In fN() = ln Iff)(X) = E ln (X)
9N(X) i= g(O(X1) 1 g(i)(Xi)

and that ln f(i)(Xi) - In g(')(Xi) is independent of In.f(i)(Xj)-
In g(i)(Xj) for i # j under fN and gN. Q.E.D.

Corollary 3: Under the assumption of Section III, if f(i) = f,
g(i) - g, i - 1,*-., N; and I(f :g)/u(f :g) # 0, I(g :f)/o(f :g) .

0, then one gets perfect discrimination as N -* oo.
The conditions of Corollary 3 are obviously not necessary for

asymptotically perfect discrimination. In fact, little in the way of
general results involving I/a can be given that are not immediate
from Propositions 1 and 2.
Another approach which is commonly used would be to use

bounds on PC in terms of various types of information measures.
There is a large literature on this subject (see, e.g., Toussaint
[17], [18] for lists of references) and many reasonable measures
of information have been proposed including the divergence (see,
e.g., Kullbach [13, ch. 1]),

J(f,g) = I(f :g) + I(g: f).

The divergence has the advantage that it takes a particularly nice
form when the independence assumptions of this correspondence
are made and the densities take the form (3c). Two upper bounds
for P, in terms of J are given by Kailath [11 ],

Finally, let J be fixed, 0 < J < oo. Let 0 < 65 be arbitrarily
small and small enough so that

(4d)e-J/6 < -l and & < -l.

Let 6 < X < 1 and

f(0) - 8, f(1) = 1 - 8

g(O) = e - 6, g(l) = I - £ +±

then Pe = 2(1 - 6) and

J = 6 ln - +ln 1 1$ 6)
e- 1 -e J

(4e)

If we can solve (4e) for e such that 6 < 8 < 1, then the theorem
is proved. We write (4e) as

so t h - E + Jib
e=.

so that

82 _ 8 - 86 - = 0. (4f)

This has real solutions if

(1 + 6)2 + 4 6 > °
e /i- I

which in turn will be satisfied if

46eeJI .

1 - < I

i.e., if

46 eJ16
e - 1

1 - P > le'-J'2' (4a)

and by Toussaint [171,

I - Pc > --(1 - 4 exp [- 2H(7r) - J(7rf,7r2g])1/2 (4b)

where

H(;T) = -71 In 7r, - 2 In 2

Note that if = Z2 = 2, then (4b) becomes

1 - PC > 1 - 2(1 - e(-J/2))1/2 (4c)

Unfortunately, no nontrivial lower bounds for PC in terms of J

exist as is shown in the following theorem.
Theorem 1: Assume that a Bayes decision rule is used with

-rl=: 2 =
I andfand g known. Then the best upper bound on

the probability of error, Pe -- 1 - P, which is a function of J

alone and which holds for all f and g is Pe <' 2
Proof: First of all, it is well known that Pe < I for any f

and g. We now need to show for arbitrary fixed J > 0 that we

can find an f and g with that J and with the corresponding Pe
arbitrarily close to 2. If J = 0 we takef g and hence Pe -2

Henceforth assume that X can take on only the values 0 and I.

Let I > 6 > 0 be arbitrarily small. If J- oc, choose

f(O) 6, f(l)- 1 - 6

g(0) = 0, g(1) = 1

then J = oc and Pe (1 - 6)/2.

or

eJ-6 < 14-le-J/
4 eJ16

which is satisfied by (4d). We now want to check whether the
solution of (4f) is between 6 and 1. Substituting I for 8 in the
left-hand side of (4f) we get

6(1 esa) > 0. (4g)

Substituting 6 we also get (4g). Since the left-hand side of (4f)
is a parabola which tends to + oo as 8 -+ + cY and since its values
are positive and equal evaluated at 6 and 1 and since solutions
exist they must be between 6 and 1. Q.E.D.

This leaves one with three options: 1) abandon the bounding
of P, approach, 2) work with other forms of information pro-
posed in the literature (which do not take the particularly nice
form that J does in the case of independence), or 3) look for
some other convenient (in the case of independence) quantity for
which suitable bounds on P, do exist.

V. UNKNOWN CONDITIONALS

The case of greatest practical interest is, of course, when fand
g are unknown and must be estimated from training data. We
assume that we have training data D1 and D2 as defined in
Section II; the points in D1 are m1 independent identically
distributed observations from the distribution fN and the m2
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points in D2 are similarly selected from gN. From this data we
form estimates, fN and 'N, of fN and gN. In [4] the assumption is
made that IN and gN take the form (3c) implying that one esti-
mates each marginal fi, i = 1, ., N and gi, i = 1, *, N,
separately. This would be likely to happen only if one knew
ahead of time he was dealing with independent coordinate
variables since most methods of forming fN and gN do not lead
to the form (3c). The most common nonparametric method of
obtaining density estimates is to use a Parzen-type estimate, for
example,

fN(x) fh(x - y) dFN(y)

where h is a "window" which is usually required to be non-
negative and integrable to 1 and FN is the sample distribution
function of D1. A common choice for h is the Gaussian window
(parameter a > 0)

h,(x) = (27'a2)-n/2 {exp- 2 x'x

In this case
N

fN(x) = (27ro2ln2ml 1 E exp - (X _ )2
YieDi 22 j= 1

which does not take the form (3c).
Suppose nonetheless that one did know enough to use estimates

of the form (3c):
N

IN(x) = fJfji)(x1)
N

gN(X) = H gi)(Xi)
1

(Sa)

where to be more exact one should, e.g., write JW as a function
of ml + 1 variables:

,./i)(Xi) = ,/(i)(Yl() sYm, s;i).

Note that in this case the random variable f(i) is independent of
(i) and g(j), i, but not necessarily independent of gi).
The quantity of interest is then

Pc= [P{IN(X) . gN(X) wE Cl)

+ P{gN(X) > (X) IW E C2). (5b)

Transferring to logarithms as in (3b) we define
N

VN = E [In f(i)(Y1(), , YMl), Xi)
- lngi)(Zl(i), Z (i) Xi)]

then (Sb) becomes

PC= i-[P{VN > O IW ECl} + P{VN < OwIwEC2}]. (SC)
Note that VN is a sum of N independent random variables.

Much is known about such sums, perhaps the most comprehen-
sive recent colligation of results on the central limit problem is
in Petrov [15]. Given more information about f, g, f, and g one
could use those results to give more detailed statements.

In [4, p. 242] it is claimed that a necessary and sufficient
condition for PC to tend to 1 as N -+ oc is for

EfEDVN -* CC

and

where ED indicates the expectation over the training data. It is
reasonably clear, however, that (5d) is neither necessary nor
sufficient since one cannot say whether or not P{V > O} = I
knowing only that EV = oc. In the appendix to [4], the authors
comment that in order for their result to hold, certain quantities
ought to be "sufficiently well-behaved" but do not give any set
of additional requirements. A counterexample to the sufficiency
of (5d) is given below.

Example 2

Let N(a,b) denote the Gaussian density with mean a and
variance b and

gi= N(l,o 2), i = 1,2,...,
where it is assumed that we know that the densities are Gaussian
and that the variances are ai, i = 1,2,. * but we do not know the
means. Assume that ml = m2 = 1, then the natural estimates
are

f(i)(Xi) = exp [-(1/2oi2)(xi -yl )]

g0(xi) = 2 exp [-(1/2orj2)(xi -

Calculating (5d') and (Sd") we get, respectively,
N 1 N 1

EfED E - [(Xi - Z - (X Y)2] =E 2
i 2o~~~~~~~2 1~~~ 2ori

N 1 N 1
E9EED D a2[(XX- Z1 i)2 -(Xi- Y11)2] =-E

Choose, for example, Ca2 - i = 1,2,..; then condition (5d)
is satisfied.
To complete our counterexample we need to show that PC

does not tend to 1 as N -+ oc. Look only at

P{VN 2 0 wE C1}

(1 [(XI- Zii) (X Y2 >]

(Se)
The above sum is a sum of independent random variables and
we will now show that the central limit theorem applies. Let VNi
denote the ith term in the above sum, then as we have stated

E(VNj wE C1) = -

Furthermore, it is easy to calculate that

var (VNi w ECl) = 3 + 2
ai

Finally, we need only show that

E(IVNi - EVNi I WE C) < R < oc.

The random variables

(5d') and

(Sf)

EgEDVN -+ - Cd
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are squares of N(1/1A2 ai,l) and N(O,1) random variables,
respectively. Since by Minkowski's inequality

E VNi - 21 J < (EVNi 3)/3 + (EVNi 3) 13 + 1-6)

and EVNi'3 and EVNi"3 are sixth moments of these normal
random variables we have shown (5f). We can therefore apply
Lyapunov form of the central limit theorem (see Breiman [3,
p. 186], e.g.).

Write (5e) as
N1 N

(V(IN^ _ai2 - '2 ! W
3N+2 al-2(3N + 2 o.i2)

Again let ui = 1, i= 1,2,- and the right-hand side of the
above inequality tends to 0 as N -* oo, while the left-hand side
tends to a N(O,1) random variable and therefore PC - I.
An interesting example where it pays to ignore training data

is given in [4, p. 243, Example B]. This example works because
the decision rule does not make use of important information.

VI. CONCLUSIONS

The results indicate that perfect discrimination for Bayes-type
decision rules may or may not be obtained as the dimension
N -e oo with independent coordinates. This depends on the
"degree of separation" provided by the variables being added.
It is, of course, not sufficient to look only at the means of f M

and gi") or ln f(i) and ln kQ). The divergence J is also not of much
use to indicate perfect separation. To give more detailed results
than given here would require more detailed information about
f, g, f, and g. An interesting open question is to find a convenient
information measure for the case of independence which also
provides reasonable upper bounds on Pe.
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"Independence, Measurement Complexity, and
Classification Performance": An Emendation

B. CHANDRASEKARAN, MEMBER, IEEE, AND ANII K. JAIN,
MEMBER, IEEE

Abstract-Some of the results of our paper, "Independence, Measure-
ment Complexity, and Classification Performance" [1], require clarifica-
tion and some need to be modified. That task is undertaken.

The fabric of our paper [1 ] is marred by one weak thread
running through it, and that thread is spun out of an inadequate
convergence argument. Van Ness [2 ] locates the problem clearly.
On the other hand, the comments by Duin [3] are a mixture:
one mistaken, one a semantic difference, and one true, but rather
moot. We shall briefly go through the results of the earlier paper
[I ] and poinit out where they need modification. Along the way
we shall comment on the points raised in [2].
To recapitulate the notation:

N N

fN(X) Hi- (X), gN(X) H gi(xi)
ii j~~~~~~~~~ I

are the two class-conditional densities; x is the pattern vector,
which consists of N independent measurenments xi, i- 1, ,N;
f, etc., stand for estimated densities; c1 and C2 are the two classes.
All summations, unless otherwise stated, are from 1 to N.
ExECj will stand for expectation with respect to class c;, and EZ
for expectation with reference to training data sets X. In addition,
for notational simplicity, we use the following abbreviations in
this note:

di log fi log i

Di(j) ExecjEYdi
and Vi)-- E..CjEz [(di -Di()) ]

1) In the case of infinite sample sets, i.e., the case of knownl
fd(x) and gN(x), we claim in [1 ] that if, for all i and almost all x,

(1)
then

E log N(X)

and
2 log fN(X)

9N(Xt)

0(N)

O(N)

where Ef and gf2 refer to expectation and variance with respect
to the f-distribution. This would be true if all the measuremenit
variables are identically distributed. In the general case, however,
condition (1) is insufficient to guarantee the O(N) behavior of the
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