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Understanding Shape:II. Symmetry

LARRY S. DAVIS

Abstract-Methods of detecting approximate local symmetries of a

polygon are developed, and a hierarchical representation of these sym-

metries is constructed. The approach is extended to a class of closed
curves that have simple polygonal approximations; extension to wider
classes of curves is also discussed.

I. INTRODUCTION

The perception of shape plays a prominent role in both
human and computer vision. The development of computational
models for shape has closely paralleled the succession of meta-

phors for pattern (and, in particular, shape) recognition. Twenty
years ago the metaphor was template matching, and shapes
were represented by (idealized) templates. A few years later,
shapes and patterns were being recognized on the basis of
global feature measurements (e.g., moments, Fourier coeffi-
cients), and feature vectors served as shape representations.
(The corresponding development in human perception was the
extensive study of "shape psychophysics" (see Zusne [10])
during the 1960's.) More recently, there has been great interest
in "syntactic" pattern recognition techniques, which analyze
patterns by a"parsing" process of hierarchical decomposition.
This suggests that it might be appropriate to study hierarchical
shape representations.

In[1 ] it was suggested that the representation of the sides
and angles of a simple closed curve should be hierarchical. The
top levels of the hierarchy would contain a coarse description
of the shape, while the lower levels would reflect the finer
structure of the contour.

Other aspects of shape understanding can also be naturally
described in a hierarchical fashion in particular, symmetry.
(We shall consider here only symmetry with respect to a line,
i.e., lateral symmetry. Our methods could be extended to handle
radia[ symmetry, if desired.) Symmetry can play many roles
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Fig. 1.

in a theory of shape understanding. If a shape is symmetric,
then it can be represented economically one need only store a
description of "half" of the shape, and note the presence of
the axis of symmetry. The "half" may itself possess symmetry,
so that further economy is possible; this indicates the hierarchical
nature of symmetry. Furthermore, if one is presented with a
contour that is partially occluded (e.g., Fig. 1), the presence of
symmetry in the available segments can provide powerful clues
for proposing a completion to the figure. (Consideration of con-
tours with gaps precludes using schemes based on moments
(Zusne [10]) or Fourier coefficients (Zahn [9]) to detect sym-
metries.) In view of the difficulty in obtaining closed borders of
objects from digital images using edge detection and tracking
techniques (see, e.g., Davis [1]), this could be a very useful tool.
The symmetry of a shape can also help in defining the orientation
of the shape. Symmetry plays an important part in human
perception of shape orientation (Rock [6]); a computational
model for shape orientation would be useful for shape matching.
By combining the orientation of a shape with notions of "top"
and "bottom," an anchor can be provided for matching processes.

It is the contention of this correspondence that the construc-
tion of representations thatcapture the symmetry of a figure
involves abstract symbolic processes that create hierarchical
descriptions. We will first consider symmetries of simple poly-
gons, ignoring hierarchical side/angle structure (if any). Sym-
metries of simple curves, and of figures that do have a hierar-
chical side/angle structure, will be discussed in later sections.

II. BUILDING HIERARCHICAL DESCRIPTIONS OF SYMMETRY
FOR POLYGONS

The overall strategy for building hierarchical descriptions of
the symmetries in a polygon is to first detect "microsymmetries"
between pairs of sides of the polygon. Next, these microsym-
metries are clustered into larger aggregates. Certain relations
among these aggregates are then defined, and these relations
determine the possible hierarchical descriptions of the polygon.
Suppose that we have a polygon P {vj0= , where ti are

the vertices of the polygon. Let (x,i,y,, ) be the coordinates of
the ith vertex, and letS I '+ mod, be the sides of the
polygon. The first relation to determine is which pairs of sides,
Wj°,yk), are symmetric to one another. This involves hypo-
thesizing an axis of symmetry for the two sides,and then measur-
ing the cost of the symmetry with respect to that axis. There are

two cases to consider:
1) sides Y'J andY k meet at a vertex i.e., eitherj= k+ 1
modn ork 1+ lmodn;

2) sides £/j and°k do not meet.

204



205CORRESPONDENCE

- - K

v k +

I

axis

Fig. 4.

Vk+

L,
Xi

I

I-\

(a) k I

Fig. 5.

Case I (all numbers modulo n): Sides Sfj and 5°k meet at a

vertex. Suppose k = i + 1. Then the two sides meet at vertex

Vj+ 1. A likely candidate for the axis of symmetry a is either
1) the angle bisector of vertex vj+ 1, or

2) the perpendicular bisector of the line joining vertices

vj and vj+2 (see Fig. 2(a), (b)).
A good measure of the cost of the symmetry c(a) in this case

is just the difference in the lengths of sides Yj and 5jk. How-
ever, it would be better for the measure to be scale invariant;
the cost is related to angle 0 in Fig. 3(a), (b). If 0 is 0°, then the
symmetry is perfect. If 0 > 0°, then the symmetry deviates from
the ideal.

Case 2. Sides 9j and 5k do not meet. In this second case,
there are four possible axes, one for each pairing of an end
of Yj with an end of °k- If the pairing is (vj,Vk) then the hypo-
thesized axis a is the perpendicular bisector of the line joining
vj and Vk (see Fig. 4). The measure of the cost of the symmetry
is (see Fig. 5(a), (b)):

a) 101 - 021 if vj1+ and vk+1 are in the same half plane with
respect to the line VJVk;

b) otherwise some high number.
In practice, a threshold is set on these cost measures, and any

proposed symmetry with higher cost is discarded.
The next stage of the process is to cluster the local axes of

symmetry into aggregates. If each axis, ai is represented by an

equation of the form

Pi= -x sinOi +y cosOi

then clusters of local axes correspond to clusters of points in
(p,O) space [7]. The clustering algorithm designed here for
grouping axes works in the following way:

Define the span of an axis, span (a,), as the set of sides that
are symmetric with respect to that axis. Define the span fraction
s(ai) as the ratio of the length of span (ai) to the perimeter of the
polygon. Choose a local axis having minimal cost and maximal
span as a cluster center. Call this cluster Ai. Let

Pi = E pillAi
ai e Ai

and

i = E ilAil
aiE Ai

Now find a local axis aj having minimal cost and maximal span,
satisfying

a) Ii- OjI < to
b) lpi -pjl <t

where to and tp are dynamically defined thresholds that depend
on Ai (e.g., tp may be the standard deviation of the pi's). If no
such aj exists, then the cluster is complete, and a new cluster
can be constructed from the remaining local axes. The process
continues until all local axes belong to some cluster.
Two examples of the local axes determination and clustering

procedures are shown in Fig. 6. Fig. 6(a), (b) shows the poly-
gons, with the sides and vertices labeled. Fig. 6(c), (e) are tables
of the local axes detected in the polygons. (Note in Fig. 6(e)
that many of the local axes do not correspond to any axis that
would ordinarily be perceived by a human observer.) Fig.
6(d), (f) list the clusters constructed from the local axes.

These clusters form the basic units with which subsequent
processes will work. These processes will construct hierarchical
representations of the symmetries of the polygon. An example of
the types of representation that will be constructed should
clarify the later discussion of how the processes work. Consider
Fig. 6(b), and the list of clusters for that polygon in Fig. 6(f).
Fig. 7 shows one possible description of the symmetries of Fig.
6(b). The level 1 description indicates that the vertical axis
comprises the highest level (level 1) of the hierarchy. It splits the
figure in "half" and enables us to concentrate on finding repre-
sentations of the symmetries in only half the figure. Next, level
2 contains a horizontal axis that spans all of the sides in half
of the level 1 representation. Similarly, the level 3 description
contains just the diagonal axis that spans all of the level 2 sides.

This example indicates that the first step in building a hierar-
chical symmetry representation is to chose an axis for level 1.
A reasonable choice is one that "accounts for" the largest
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Fig. 6. (c) List of axes for (a). (d) Clusters for (a). (e) Axes for (b). (f) Clusters for (b). Note: For each side, angle 1 is tail of

arrow and angle 2 is head (for (c)-(f)).

amount of the polygon in the best way. The particular figure of simply not symmetric, a threshold is placed on the -aA, s(a,)
merit that was adopted here was to find the cluster Ai such that term. If no cluster accounts for an appreciable percentage of the

Ea,A s(ai) is maximal, while YaieAi c(ai) is minimal; i.e., the polygon, then no description is generated. On the other hand,
cluster that accounts for the greatest part of the perimeter at there may be several equally good clusters (as is the case for both

minimal cost. To avoid building descriptions of figures that are polygons in Fig. 6). In this case, many hierarchies of symmetry
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level 1
axis is vertical

level 2
axis is horizontal

Fig. 9.

is diagonal

level 1
vertical
{1,3,4}

level 1
diagonal
{1,2}

level 2
diagonal

{2}

level 2
horizontal
{1,4}

level 3
dia onal

Fig. 8.
Fig. 10.

are possible. At times it may be necessary to create them all;
or, there may be a priori biases concerning the "best" level I
axis (e.g., the longest, the one closest to vertical). These biases
will tend to affect the control of the description building mecha-
nism, but not their underlying computations (see the recent
papers by Marr [4 ], [5 ] on the role of context in low level vision).
The level 1, or major, axis splits the polygon into two sets of

vertices-those in the positive half plane determined by that
axis, and those in the negative half plane. The next phase of the
process involves finding a set of clusters that account for the
symmetries between the sides of the polygon that have at least
one vertex in the positive half plane of the major axis. In order
to do this we made use of two definitions:

Definition 1: Two clusters of axes Al and A2 will be called
incompatible if there exist a, e A1 and a2 E A2 such that
span (a,) n span (a2) X 0.
The notion of incompatibility tries to capture the fact that

there are pairs of axes of a figure that cannot be attended to
simultaneously. For example, in Fig. 8, the axes a, and a2

are incompatible. It should be pointed out that incompatibility
is a relation that is only meaningful when comparing two axes

at the same level in the hierarchy-i.e., if two clusters are in-
compatible this means that they cannot both occur at the same

level of the hierarchy. However, it is quite possible for them
to occur at different levels. A relation that extends across levels
in the hierarchy is:

Definition 2: A2 is inconsistent with respect to A1 if there
exists an a2 E A2 such that elements of span (a2) occur entirely
in both the positive and negative half planes determined by
A1. For example, in Fig. 9, A2 is inconsistent with respect to
A1 because sides s1 and s2 are contained one in the positive, and
the other in the negative, half plane defined by A1.

Given these two definitions, we are now in a position to
describe the construction of the lower levels of the hierarchy.
Call a node N in the hierarchy a tip node if the operation de-
scribed below has not been applied to it. Initially, the root of
the hierarchy, which corresponds to the major axis, is the only
tip node. Each node has an axis AN associated with it. Let SN
be the set of sides of the polygon associated with the tip node.
At the root initially, SN is the set of sides of the polygon that

a) are symmetric with respect to the major axis,
b) have at least one vertex in the positive half plane defined

by the major axis.

The expansion operation is as follows.
1) Choose a tip node N from the hierarchy-if there are

none, then the hierarchy is complete.
2) Find all clusters Ai such that a) Al is not already in the

hierarchy, and b) Ai is not inconsistent with respect to AN.
Let PD be the set of these Ai; PD represents the set of possible

descendants of node N in the hierarchy. Let DN be the set of
descendants of node N. Initialize DN = 0-

3) Choose from PD the axis Aj such that s(span (Aj r SN)) > 0

is maximal, and Aj is not incompatible with any element of DN.
If no such Aj exists, then all of the descendants of node N have
been generated, and we go to step (1).

4) Set SN = SN - (span (A) n SN). Set PD = PD - Aj, and
DN = DN U Aj. Insert node N' into the hierarchy with AN' = Aj,
and SN' = {9'i aie span (Aj) r SN and 9'i is in the positive
half plane determined by axis Aj}. Go back to step (4).
Given different major axes, different hierarchies will be

generated. Fig. 10 shows two such hierarchies for the square

in Fig. 6(a). At each node in the hierarchy we display SN and

level 3
axis

Fig. 7.

/

aI
/

a2
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level 1
vertical

{1,7,8,9, 10,11,121

level 2
horizontal

{9,l0,11,12}

level 3
diagonal
{11,12}

Fig. II.

(a) (b)
Fig. 12. (a) Sharp angle. (b) Blunt angle.

list the axis associated with that node. Fig. 11 contains two
hierarchies for the cross in Fig. 6(b).

III. EXTENSION TO SMOOTHLY CURVED SIDES
This section will consider how the approach described in

Section II is modified to deal with sides that may curve gently.
A smooth curve segment is taken to be one with no significant
curvature maxima. Significance is a function of both the resolu-
tion and magnitude of the curvature maxima that do exist along
a curve segment. In the context of hierarchical descriptions, a
smooth side is a side with no substructure. Thus the process that
constructs the hierarchical description implicitly defines the
significance of curvature maxima.

In order to augment the symmetry understanding mechanisms
to deal with smooth curves, a notion of shape similarity is in-
corporated into the microsymmetry detection procedures. It is
important to emphasize that we are interested in coarse measures
of similarity; therefore, curves that are exactly similar accord-
ing to the criteria we will define will not necessarily be identical.
The problem of matching two curves will be discussed elsewhere.
This entails modifying the microsymmetry cost function c
to reflect the degree of similarity between two curves. A second,
more subtle, difference between contours with smooth sides and
these with only straight sides is that angles may no longer be
corners; an angle may be sharp or blunt, depending on the
curves that meet at the angle (see Fig. 12). Here again, the micro-
symmetry cost function is where this new information enters the
system. This means that neither the cluster building nor descrip-
tion building procedures have to be changed.
The remainder of this section is divided into three parts:
A) A discussion of similarity measures between smooth

curves.

STRA I GHT

CONCAVE

level 1
diagonal-right

{1,8,9,10,11,12}

level 2
diagonal-left
{ll ,12}

level 3
vertical
{11,12}

CONVEX

S PLUS

SMINUS
Fig. 13.

B) A discussion of functions that compute the "sharpness"
of an angle.

C) Analysis results for some smoothly curved contours.

A. Similarity Measures Between Smooth Curves

Our similarity measure is based on assigning fuzzy member-
ships in a class of sets to a curve. The sets correspond to the
allowable description types for the class of contours being
considered-e.g., straight, convex, concave. The names of these
sets constitute a vocabulary for describing smooth sides. We
will consider only the following five descriptions-STRAIGHT,
CONVEX, CONCAVE, SPLUS, SMINUS (see Fig. 13).

Let the sequence of coordinate pairs of a side si be

vi (xi.,yid),(xil,yi), ,(Xxi,yld) Vi+= l

Let b, = (0,,,p5,) be the parametric description of the straight
side in the hierarchy of sides corresponding to si. For example,
b5. might be v,vi + 1. A particularly bad choice is the least squares
line defined by the points (xj0,xj,), - - *,(xj,,y1.), since it must
pass through one of the points in the sequence. Let d(x,y,b5) =
p5 - x sin 9, + y cos O, be the distance of the point (x,y) from
the line b5.
The first step in determining the membership values for si is

to construct the set

%, = {d(xj,yj,b5i): 1 < i < n - 1}

208
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Fig. 16.

Fig. 14.

Fig, 15.

which is the set of distances of all points of Sj from b,,. Define

B+O = {j: d(xjj,yjj,b.,) > 0 A d(xlk,ylk,bsI)
< d(xyyfj,b,), IJ- kl r}

-9, r = {U: d(xiJ,yij,bsL) < 0 A d(xik.,yk bsL)
> d(xjj,yi,,b,), I - k < r}.

-s+, is the set of points that are local maxima of distance from
b., over a range (smoothing factor r), and g-, similarly is the
set of local minima. We should choose r large enough so that
the local distance maxima corresponding to curvature maxima
of fine resolution will not be detected. -9+ r can be computed
by a parallel-like algorithm (see Davis [1]).
We sort -9+ r by d so that we can refer to @9+,r(l), the element

of the set with greatest d value, etc. Similarly, we sort Q3T, 50
that 9Si,,r(l) is the element of the set with minimal d value. We
use the ordered sets 9+ and 9- to construct the fuzzy member-
ship values for side si. Denote 9+'r(0) by i+ and 9sir(l) by i-.
If 9+ is empty, let i+ = - 1, and similarly for -9. We can
now present the fuzzy membership functions for the various sets.

1) STRAIGHT: We take the ideal straight side to be one whose
9 + and 9- are empty. The straightness of a side is related to the
angular stickout of the elements of 9+ and 9- from the line bsi.
The angular stickout of point (xi,yi1) from bs, is (see Fig. 14)

ASO(j) = sin'1(jd(xijyijb,)1
max ['I(xio - xij)2 + (yi. - yij)2,

-(Xi Xij)2 + (yin Yjy)2)], if 1 < j < n

= 0, otherwise.
If i + I-1, then ASO(i +) = 0. To measure STRAIGHT (si), then,
we compute

max (0,(max (ASO(i+),ASO(-)) - tST) * (lItST))
That is, the straightness of side si is related to the maximum
angular stickout of any point of side si from b5.. If this angular
stickout is greater than some threshold tST, we set the member-
ship of si in the set STRAIGHT to 0. tST will correspond to the
angular stickout of an ideal convex side. Thus we are saying that
a side whose membership in CONVEX iS 1.0 has membership 0
in STRAIGHT.

2) CONVEX: Our model for a convex side is a semicircle. For
side si of length I = lvivi+,1, a semicircle with si as diameter
will have maximum angular stickout from b,. of 7r14 (see Fig. 15).
So, we define CONVEX (si) = min (ASO(i+) - ASO(i-),O) * 41'.
If ASO(i-) > ASO(i+), then the side is more concave than
convex.

3) CONCAVE (Si) = min (ASO(i-) - ASO(i+),0) * 4/7r.

V.i

Si

vi+I Vj+'

Fig. 17.

4) SPLUS: This case represents smooth sides that have a convex
segment followed by a concave segment. Clearly SPLUS blends
into STRAIGHT, CONVEX, and CONCAVE as the ASO values go to 0,
or the lengths of the convex or concave segments go to 0. Our
model for an SPLUS side is a convex semicircular arc joined with
its reflection, a concave semicircular arc (see Fig. 16), and we
take

SPLUS (S) - if i+ < 0 v i- < 0, then 0,
else if i- < i+, then 0,
else min (ASO(i+), ASO(i-)) *.Itsp,

where tsp = x/8 (see Fig. 16).
5) SMINUS is defined analogously to SPLUS.
Using these functions, a side is assigned a membership in

each set. As a measure of dissimilarity between two sides we
have chosen the maximum absolute difference between corre-
sponding membership values. The cost function for microsym-
metries is changed in the following way. Any pair of sides not
symmetric according to the old criterion is rejected, but now any
pair of sides whose dissimilarity measure > 0.5 is also rejected.
The value 0.5 was chosen because it indicates a reasonable
certainty that one side is contained in one set (e.g., CONVEX),
while the other side is not.1 The new value for the cost is the old
value plus a scale factor times the dissimilarity:

c'(a) = c(a) + k * dissimilarity of (si,s).
B. "Cornerity" Measurement

In [3], Freeman and Davis proposed a "cornerity" measure
that was based on the curvature at an angle and the straight-
ness of the sides of that angle. This section presents an alter-
native method based on the local curvature measurements that
underlie the angle detection procedures described in Davis [1].

Briefly, this curvature measure is defined as follows: Let
{(xi,yi))1= be a sequence of points that describe a simple curve.
Let Pi,j be the vector from (xi,yi) to (xj,yj). Then ci,r, the
curvature at point i and resolution r, is defined to be
cosP1(Pi ,.Pi i +r). This is the size of the smaller included
angle determined by the two vectors.

1 Note that when computing the dissimilarity between si and sj for
determining the degree of microsymmetry between the sides, if we are
using vertex pairs vi and vj+1 (or vi+I and vj), then we compare SPLUS (SI)
with SMINUS (sj) and SMINUS (SI) with SPLUS (sj)-see Fig. 17.
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TABLE I
FoURIER COEFFICIENTS FOR Fio. 22(c)-(d)

(a)
n an Yn

0 20 0

1 20 0
2 20 0

3 20 0

4 20 0

4
r(6) = anexp[cosCe+Yn)]

n=0

(b)
n an Yn

0 4. 0

1 4.5 0

Z 5.0 0

3 5.5 0

4 6.0 0

4
r(0) = E exp[ancos(6+Yn)]

n= 0

Fig. 20.

Fig. 21.

(a) (b) (c) (d)

Fig. 22. Test curves.

Now, suppose that the angles in Fig. 18 are to be distinguished
on the basis of their sharpness. The angle in Fig. 18(a) can be
described as cusp-like, that in Fig. 18(b) as corner-like, and that
in Fig. 18(c) as rounded.
The method is based on the rate of change of c,. with respect

to r-i.e., dci.,/dr. Fig. 19(a)-{c) shows that we would expect

dci,,/dr to be positive for a cusp-like angle, zero for a corner-

like angle, and negative for a rounded angle.
In order to estimate dc1,/dr, we fit a least squares line to a

set of ci.,'s and regard the slope as dci,rldr. Since different
resolutions are attributed to different angles, the set of CLir s
used to calculate dci rldr for a particular angle should be deter-
mined by the resolution of that angle. The largest size used

TABLE II
Fuzzy MEMBERSHIP VECTORS FOR THE SIDES OF FIG. 23(a)-(d)

(a)
DEGREES OF

SIDE MEMBERSHIP (STRAIGHT, CONVEX, CONCAVE, SPLUS, MINUS)

1 (.87,0,.12,0,0)
2 (.74,.25,0,0,0)
3 (.71,0,.28,0,0)
4 (.85,0,.08,0,.11)
s (.82,0,.17,0,.11)

(b)

1 (.74,.25,0,0)
2 (.88,0,.02,.17,0)
3 (.79,.20,0,0,0)
4 (.88,0,0,0,.22)

(c)

1 (.88,.03,0, .16,0)
2 (.84,.15,0,0,0)
3 (.85,.14,0,0,0)
4 (.86,.08,0,0,.10)

(d)

1 (.92,.07,0,0,0)
2 (1.00,0,0,0,0)
3 (.70,.24,0,0,.10)
4 (.88,.11,0,0,0)
5 (1.00.0,0,0,0)
6 (.40,.54,0,.09,0)
7 (.89,.10,0,0,0)
8 (.86,.13,0,0,0)
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CORRESPONDENCE

(a) (b) (c)

1

5 4

(a)

(a)

4

2 3

(b) (c)
Fig. 23. Top-level approximations.

(b) (c)
Fig. 24. "Halved" figures using best axis.

(d)

18

2(7

(d)

TABLE III
CORNERrrY MEASURES FOR THE ANGLES IN FIG. 23(a)-(d)

(a)
angle cornerity (r=8)

1 .05
2 .16
3 .13
4 .28
s - .os

(b)
1 - .02
2 0.
3 . 0 3
4 - .01

(c)
1 - .01

2 0.
3 .10
4 .01

(d)

1 0.
2 . 0 2
3 0.
4 .01
5 .0 4

6 .0 2

7 0.
8 . 0 2

(d)

Fig. 25.

should reflect the localness of the perception of sharpness, and
so will probably not usually be comparable to the resolution
of the angle. The smallest size, on the other hand, should be
large enough so that curve digitization error cannot appreciably
influence the computations (if I is the length of pij, then the
angular uncertainty in P,j is proportional to arctan l/l-see
Fig. 20). Alternatively, one can weight the curvature values
according to the expected error due to digitization. However,
we will assume that our curves are well digitized (Freeman [2]),
so that digitization effects can be ignored.

It is not obvious how to compare the importance of similar
angle descriptions and side descriptions in evaluating the quality
of an axis of symmetry, and so the cornerity measure has not
yet been integrated into the microsymmetry cost function.
Fig. 21, though, seems to indicate that the description of angles
does play a role in human perception of symmetry; intuitively,
its role is less important than that of side descriptions.

C. Experimental Results

Fig. 22(a)-(d) shows four smooth curves. Fig. 22(a) is a
jigsaw puzzle piece taken from Freeman [2]; Fig. 22(b) is a
hand-drawn square-like object; while Fig. 22(c), (d) were gen-
erated using Fourier methods due to Shepard [8] and described
in Davis [I]. Table I lists the coefficients used to generate
Fig. 22(c), (d).

The top level of the angle/side hierarchy for each of the
contours is shown in Fig. 23(a)-(d). Table I1(a)-(d) lists the
fuzzy membership values of each of the sides of the hierarchies
in Fig. 23(ak-(d). Table III(a)-(d) displays the cornerity measures
for the angles in the hierarchies, and Fig. 24(a)-(d) shows the
best symmetry descriptions of each of the contours. Note that
especially for Fig. 22(b), if the descriptions of the sides were
not taken into account, then the vertical axis would not have
been preferred over, say, the horizontal.

V. SYMMETRY UNDERSTANDING FOR HIERARCHICAL
DESCRIPTIONS OF SHAPE

Suppose that instead of restricting the sides of a contbur to
be smooth, we aliow them to have substructure in the form of
subsides. (Methods of obtaining hierarchical representations of
contours in terms of sides and subsides were discussed in an
earlier paper [I].) Foi, example, in Fig. 25, it does not seem
sufficient to describe the side between angles 1 and 2 as simply
being straight; some notice should be taken of the many small
sharp angles and short sides that underlie the gross straight
nature of the side. The presence of this substructure should also
be taken into account when describing the symmetries of Fig. 25.
The discussion that follows will be mostly speculative; in-

stead of presenting extensions or modifications to the algo-
rithms of Sections II and III, we will examine certain issues
that would be central to any such modifications. Some of these
issues should be relevant to a computer model of human shape
understanding. The first question to be dealt with is: Are the
smooth sides discussed in Section III a subset of the set of
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(a) (b)
Fig. 26.

(c)

Fig. 27.

Fig. 28.

Fig. 29.

sides that have substructure, or are the sets disjoint? On the
one hand, we have regarded a side as being smooth just in
case it is assigned no substructure. Yet, on the other hand,
a piecewise-linear approximation to a smooth side may be re-

presented as a side with substructure, and this can happen in

many ways.

For example, Fig. 26(b), (c) shows piecewise-linear approx-

imations to the smooth curve in Fig. 26(a). If we regarded all
three curve segments in Fig. 26 as smooth, and generated the
sets 29+ and 9-, then the description generated based on these
sets would probably be the same for all three segments: pri-
marily convex curves. The substructural components of Fig.
26(b), (c) correspond to yet another level of description. Fig.
26(b) is a convex side with one obtuse angle located at the
point of maximal displacement from the baseline, while Fig.
26(c) is a convex side that is jagged. This suggests that in de-
tecting symmetries between two sides, we might compare the
descriptions based on the assumption that the sides are smooth,
and then refine this comparison using substructure information.
So, for example, in Fig. 27, all four sides would be character-
ized as convex, but sides ab and cd would have have a common

substructural description namely, the obtuse angle.
Fig. 26(b), (c) also illustrates an important aspect of the

representation of substructure. Fig. 26(b) has as substructure
one obtuse angle, while we described the substructure of Fig.
26(c) as 'jagged." The distinction between substructural de-

scription that are statistical (Fig. 26(c)) and enumerative (Fig.
26(b)) is a fuzzy one. In the former case, we are abstracting a

common feature of many substructural components, and assign-
ing that quality to the side as a whole; while in the latter case,
no such global description of the side is possible. The situation
can become more complex, as in Fig. 28, where there is a com-

bination of statistical and enumerative features i.e., we can

describe the curve segment as a straight jagged segment, fol-
lowed by a smooth, straight segment, followed by a straight
wavy segment.
Even more perplexing is the need to notice repetitive features.

Figs. 27 and 28 can probably be adequately dealt with on the
basis of a simple taxonomy of angles as sharp or rounded. But
in curve segments such as in Fig. 29, it is important to be able to
isolate the elements n and --. ; otherwise, we cannot
obtain a satisfactory description of the curve, i.e., a description
that is in accordance with our own perception.

VI. DISCUSSION

Symmetry certainly plays a prominent role in human percep-
tion of shape. In computer understanding of shape, symmetry
can serve as a basis for compact representation schemes, as well
as providing clues for the completion of shapes with gaps. A
subsequent report will deal with the latter problem.
The previous sections of this report have presented algo-

rithms that can understand symmetry for polygon-like shapes,
and have described modifications to these algorithms that allow
the analysis of shapes with smooth sides. Several examples were
presented to illustrate the capabilities of the algorithms. Finally,
some of the difficulties that would be encountered in attempting
to extend the symmetry analysis to shapes with a hierarchy
of side and angle representations were discussed.
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Signature Verification Experiment Based on Nonlinear
Time Alignment: A Feasibility Study

MAKOTO YASUHARA, MEMBER, IEEE, AND MASATOMO OKA

Abstract-Automatic signature verification experiments are described,
in which we select one of the most promising techniques described in the
literature of automatic speech recognition of multisyllabic utterances:

nonlinear time alignment by dynamic programming, and apply it to our

problem to check its feasibility. Our experiments show that it is very
useful under certain conditions.

INTRODUCTION

This correspondence discusses one of the techniques applied to

the automatic verification of real-time signatures.
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