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reduced significantly for both the AG and the DG implementa-
tions by the precomputation of all sinusoidal terms that are
required in (17), (18), and (20); the sinusoidal terms are com-
puted before the call to LPNLP, and the resulting arrays of
values are made available to subroutines FXNS and GRAD by
the use of labeled common blocks.

Although the absolute maximum of the digital filter problem
occurs at two points, there appeared to be no significant ad-
vantage for the solution to converge to one rather than the other.
Thus, in Table X, the 1061 result was for Point A, and the 1055
result was for Point B.

V. CONCLUSION

Both constrained and unconstrained problems can be solved
efficiently using gradient approximations. The problems con-
sidered are much easier to implement using the discrete gradient
approach. This occurs because the often lengthy and error-prone
process of deriving expressions for the exact gradient is bypassed.
Also, for complicated gradient expressions, significant numerical
errors can accumulate in the evaluation of the analytical gradient,
as is evidenced by the results of the digital filter problem. Still,
this enthusiasm for the discrete gradient approach must be
tempered by the fact that CPU costs for many AG results can
be somewhat lower than costs for corresponding DG results.

Birta's conclusion [3] that DFP was never improved by a
periodic reset was based on insufficient data. For the uncon-
strained test problems considered, a significant improvement in
efficiency was obtained by resetting the search direction to the
gradient direction after every 2n + 1 line searches. For the
digital filter constrained problem, direction resets produced a
definite stabilizing effect on the results. In contrast to DFP, SS
was always hindered by periodic resets.

Convergence of LPNLP is based on gradient information.
When using a gradient approximation, inaccuracies can cause
problems with final convergence. This occurred for some test
problems presented here. At an optimum, the gradient of the
augmented Lagrangian should be zero. However, if an attempt
is made to force the gradient components to be unrealistically
small at the optimum, the algorithm may terminate with an
error message, even though the optimum has been found for
most practical purposes.
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Football and Basketball Predictions Using Least Squares
R. T. STEFANI

Abstract-Least squares is used to obtain ratings for college and
professional football teams and for college basketball teams. Predictions
are then made from the ratings. Observed accuracy was 72 percent for
3000 college football games, 68 percent for 1000 pro football games,
and 69 percent for 2000 college basketball games.

INTRODUCTION

Virtually everyone has attempted to predict the outcome of
some sporting event. It should be no surprize that automated
football ratings predate both high-speed digital computers and
wire service ratings. In the 1930's, the P. B. Williamson "System"
[1 ] was widely published. Williamson used such factors as
hardness of schedule, gameness, and a "guts" factor combined
by calculus and least squares. An intricate filing system im-
plemented by a clerical staff (mini computers?) allowed him to
rate 400 college teams. Dr. Litkenhaus of Vanderbilt University
has provided computer-aided high school football and basket-
ball ratings since 1941 for the Nashville Banner, resulting in a
state championship trophy.
The Richard Dunkel "Index" was widely published from

about 1955 until Mr. Dunkel's death in 1975. Dunkel updated
his weekly ratings depending on the margin by which the higher
rated team won or lost, with a higher penalty when loss occurred.

In 1969, Ed Mintz developed Compusport. Football predic-
tions and ratings are carried by more than 25 newspapers. The
factors were generated by trial and error using several hundred
past game results. The predicted win margin is half the difference
in team ratings plus a 2-4 point factor for home team advantage,
advantage being greater for higher rated teams. Ratings are
adjusted by comparing predicted point spread with actual point
spread, and applying a threshold and a multiplying factor.
Adjustment for loss may be greater than for victory. Variation
is limited to + 11 points. The Dunkel and Compusport adjust-
ment is independent of the number of games played. A strong
point in both is the relatively small adjustment when one-sided
games occur or when a team performs way off of its normal
rating. Compusport claims 75 percent accuracy in college
football, 71-72 percent accuracy in pro football, and 55-58
percent correctness against the point spread. A similar per-
formance-based algorithm was used by the International Chess
Federation to establish all-time ratings for grand masters dating
back to the 1700's.
The most sophisticated system is that of Bud Goode [2].

Goode has correlated past offensive and defensive statistics with
subsequent victory. Those statistics with the highest correlation
coefficients are blended to provide predictive capability. The
system is not practical for small colleges where statistics are not
readily available. A similar procedure was reported by Felson [3 ]
for application to the stock market, where a multitude of
statistics are available.

Little appears in the formal literature pertaining to rating
procedures and resulting accuracy. This correspondence is
unique in documenting a least squares system resulting in college
and pro football predictions which have been published by the
Fort Worth Star- Telegram since 1971. Basketball predictions
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have also been studied. This system requires only past scores and
opponents and proceeds directly from classical least squares, no
"learning" of algorithm factors being required. Accuracy is
highly competitive with all predictions to which comparisons
have been made.

FOOTBALL RATING SYSTEM

The model equation below relates the outcome of previously
played games to team ratings subject to uncertainty (team per-
formance varies randomly):

w = Ar + (I)
where

wv win margin column vector (M x 1) of M games (Wk is the
amount by which team i defeated team j in game k),

A selection matrix (M x N) (If team i defeated team j in
game k, then ak i- + I and akJ - 1. For ties Wk = 0,
and either team may be designated the winner for entries
into A.),

r team rating column vector (N x 1) where ri refers to
team i,

r zero mean random noise vector (M x 1) where Vk refers
to the random error for game k.

In order to establish an estimate (i) of the team rating vector,
a least squares objective function is selected so that

J= eTe (2)

e= w- AP.
The value of P which minimizes (2) must satisfy

ATAi = ATw.

(3)

(4)
Before attempting to invert ATA, inspection of the definition of
A leads one to the conclusion that the

(n(i ), i=j
(i,j) element of ATA -1, i j, but i played j

0, otherwise

where n(i) = number of games played by team i. It follows that
the sum of the elements of every row of ATA is zero, hence ATA
is singular and noninvertible. One additional requirement could
be made: the average rating must be 100. This would add one
more row to A, a row of all ones; wM+I = lOON, and A would
be nonsingular. However, to analyze 120 college teams, a
120 x 120 matrix would have to be inverted. An equivalent,
but computationally more desirable approach is taken.
The ith equation of the left-hand side of (4) represents n(i)

times the rating of team i minus the sum of team i's opponent's
ratings. The right-hand side of the ith equation is team i's total
win margin. If the rating of team i is solved for, one concludes
that each team rating should be the average opponent rating
plus the average win margin. This may be written compactly for
all teams as

r^= DP±i+ w (5)
where

D = G-1(G- ATA),
= schedule matrix [(1,j) element is + l/[n(i)] if team

i played team j ],
w = G-1ATuW = average win margin vector,

n(l)
G =

O

n(2) games played matrix.

Finally (5) may be solved iteratively

1l+1 = Di' +P1 (6)

where P1 = Ith estimate of the vector r. If all elements of r are
100 initially (r0), then (6), if it converges, results in the same
answer as solving (4) with A augmented to require an average
rating of 100. In any algorithm such as (6), important considera-
tions are convergence (can a final value be approached) and
acceleration (if the algorithm converges, can the number of
iterations be reduced).
When a team has played few games, usually one or two, then

(6) tenids to oscillate. To eliminate this oscillation, the estimate
P1 following the initial estimate P0 is adjusted by

PI, wl + M.° (7)

This adjustment only occurs for r1. The computational sequence
is thus P0°, P11, P2, r3 etc. In six seasons using the adjustment
of (7), (6) has always converged.
Convergence is accelerated by a wise choice of Po. It can be

shown for round-robin play that the following initial rating for
each team is immediately convergent (all subsequent estimates
are the same), while the average rating is 100:

P.o = 100 + wi +
n(i) + 1

N

op.,

oppon en t

Wi. (8)

In words: a team's rating is 100 plus the team's average win
margin plus l/[n(i) + 1] times the sum of each opponent's
average win margin. If this were to be done for all teams,

P-0 100 + i + (G + I)-'(G - ATA)W. (9)

The computer is instructed to use (8) as the first estimate for
teams who have played more than four games, while the previous
season's rating is used otherwise. Use of (8) coupled with (7)
results in an P6 that differs from P5 by less than 0.3 for nearly
all teams. The sixth iteration is then used for prediction.

DATA PROCESSING

At the beginning of each season, schedules are encoded in
character format, checked by a special program, and converted
to numerical format for the matrix D in (6). Previous season's
ratings are encoded for use as P10 in the early season. Weekly
results of 120 college teams and 26 pro teams are reduced to win

margins (Wk) and punched on eight data cards. The computer
cross-checks the Wk, then updates if for the next week's run.

Ratings are computed, and winners for the following weeks
games are predicted by taking the rating differences. The pro-
gram is written in Fortran IV for use on a CDC 3150 computer.
Compilation and execution time is less than 1 min per weekly
prediction. Accuracy is defined as the fraction by which the
predicted winner actually wins. Ties are counted as o right and
2 wrong. The difference (in magnitude) between predicted point
spread and actual point spread is noted and averaged.

FOOTBALL EXAMPLE

Suppose Arizona is designated team 1, Notre Dame is desig-
nated team 2, and USC is designated team 3. In three successive
games; Notre Dame defeated USC by 14, Arizona defeated
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USC by 1O and Notre Dame defeated Arizona by 8. The resulting
matrices are, for M = 3 and N 3,

0 1 -1I- -14-
A 1 0 -1 W 10

--I I 0- 8

2 -1 1 -2 0 O-
ATA 1 2 -I G 0 2 0

-1 -1 2J -0 0 2

D .

If (8) is used to define the initial rating for all three teams, it
follows that (9), the vector form of (8), is applicable. As a result

1002-
[1073]

Subsequent use of (6) results in a sequence of rating vectors
equal to '; thus convergence is immediate. Instead, if all elements
of r0 are equal to 100, using (6), the following represents all but
r r3 and r4:

= [I

-100.66-
P5 = 107.22

L92.12

[100.5]

=
105.5

94

[100.67]
i6 = 107.39j

L 91.93]

The fifth and sixth iterations are close enough together to select
the sixth iteration for purposes of football estimation. Further,
the sixth estimate is quite close to the extact rating vector above.
If a rematch should occur between Notre Dame and USC,
Notre Dame would be predicted to win by 15 points.

FOOTBALL RESULTS

Tables I and II show the results for 120 college football teams

and all 26 pro football teams, respectively, over six seasons. In
3156 college football games, accuracy was 72 percent, while for
1043 pro games, the accuracy was 67.7 percent. Variation in
accuracy from year to year is predictable from random chance.
What is not predictable is that college and pro accuracy rise and
fall together; in fact, the correlation coefficient is 0.8. The con-

clusion may be that pro and college football accuracy do not

influence each other, but that each is correlated with macroscopic
sociological phenomenon which, in turn, influences the overall
feeling of well being and consistency of performance.
The best week in college football occurred during the 1975-

1976 season (45 out of 52 for 86.5 percent). For three separate

weeks in pro football, the computer has had 12 of 13 (92.3
percent).
The relationship between predicted point spread (rating

difference) and accuracy is shown in Tables III and 1V. In college
football, the greater the difference in ratings between opponents,

the greater is the accuracy. In pro football, however, accuracy

viewed versus predicted point spread peaks and then drops off
for higher predicted point spreads. This anomaly is probably due

to lack of talent in college football where, spirit aside, low-rated
teams only cause major upsets 10 percent of the time. In pro
football, a team experiencing a poor season has the talent, but
not teamwork. Against a highly rated team, the talent pulls
together to cause major upsets 30 percent of the time. Note also
that the number of college games versus predicted point spread
is relatively uniform except for a drop-off at high predicted
point spreads. In pro football, there are progressively fewer
games at higher point spreads.
The home team advantage was studied for games picked by

the computer to be within five points. In 300 college games, the
home team won 61 percent, while in 150 pro games, the home
team won 56 percent. The computer, ignoring home team ad-
vantage, was accurate in 54 percent of the college games and
57 percent of the pro games. Considerable improvement in
college accuracy would occur if a home team advantage is
considered, but pro accuracy would actually be reduced some-
what.
During the 1970-1971 season, 10 of the 120 college football

teams were small west-coast colleges. During the 1971-1972 and
1972-1973 seasons, 10 of the teams were small Texas colleges
(Lone Star Conference). In each case, the accuracy was not

significantly different than that of major colleges. The method
is applicable to all levels of football: major, minor, community
college, and high school.
Comparison as to accuracy has been made against human

selectors (wire service, sports writers) and computer selectors,
(Dunkel, Goode, Compusport). Nearly 2500 comparisons have
been made. Least squares maintained a five game lead overall.
No significant difference in accuracy was observed against
individual human selectors, against any of the computer selectors
(some using more sophisticated strategies), or against an overall
combination thereof.

In gambling, where legal, of course, football cards are played
(for example, "Notre Dame over USC by 7"). The gambler may
select Notre Dame and be correct if Notre Dame wins by 8 or
more. Conversely, he may take USC and be correct if either
USC wins or if USC loses by 6 or less. The gambler is always
wrong if Notre Dame wins by 7. To win money, the gambler
must select a number of games on a card and be correct 4 out of
4, 5 out of 5, etc. The payoff increases with the number of games
he chooses as in Table V. However, note the required point
spread selection correctness to break even. Selecting four games
requires the least correctness, hence the greatest expected return.
The least squares predictions have been compared with 600
alternative point spreads. The computer correctly gave, or took,
the points 55.3 percent of the time, but, on cards in which
four selections are made, 56.2 percent correctness is required
to break even. Thus more computational power than that of
least squares (or predictors that have been compared to least
squares) is needed to beat football cards even under the most
favorable circumstances. The computer nearly breaks even which
answers the gambler's prayer, "Lord, let me break even, I need
the money."

COLLEGE BASKETBALL RATING SYSTEM

College basketball teams play about 25 games per season,
many opponents being unknown at the season's start because of
extensive tournament play. Uncertainty in scheduling makes (6)
inappropriate, since both D and w- would have to be updated
weekly. Instead of adjusting the entire P vector as games are
played, only the ratings for opponents in each game are adjusted,
other team ratings being held constant. In order to maintain the
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TABLE I
COLLEGE FOOTBALL ACCURACY PER SEASON

Average Error
Magnitude of
Predicted Point

Season Games Right Wrong Accuracy Spread Champion Rating

1970-1971 232 171 61 0.738 13.6 Texas 131.2
1971-1972 581 409 172 0.705 13.4 Nebraska 136.7
1972-1973 560 409+ 150+ 0.732 14.0 Nebraska 135.6
1973-1974 595 438+ 1561 0.737 14.7 Oklahoma 134.8
1974-1975 598 411 187 0.687 15.9 Oklahoma 139.4
1975-1976 590 434 156 0.736 13.7 Oklahoma 125.8
Total 3156 2273 883 0.720 14.3

TABLE II
PRO FOOTBALL ACCURACY PER SEASON

Average Error
Magnitude of

Predicted Point
Season Games Right Wrong Accuracy Spread Champion Rating

1970-1971 98 681 29+ 0.700 12.2 Minnesota 114.1
1971-1972 189 120+ 68+ 0.638 12.4 Dallas 109.9
1972-1973 189 1281 60+ 0.680 12.2 Miami 111.2
1973-1974 189 130+ 58+ 0.690 13.2 Miami 114.8
1974-1975 189 124+ 64+ 0.659 11.2 Washington 109.0
1975-1976 189 134 55 0.709 12.3 Pittsburgh 114.6
Total 1043 706+ 336+ 0.677 12.3

TABLE IIT
COLLEGE FOOTBALL ACCURACY PER PREDICTED POINT SPREAD

Predicted
Point Spread Games Right Wrong Accuracy

0-5 663 378+ 284+ 0.571
6-11 649 396 253 0.610
12-13 683 492 191 0.720
19-23 635 538+ 96+ 0.848
29 and up 526 468 58 0.890

TABLE IV
PRO FOOTBALL ACCURACY PER PREDICTED POINT SPREAD

Predicted
Point Spread Games Right Wrong Accuracy

0-5 323 1941 128+ 0.602
6-10 276 183 93 0.663
11-16 241 184 57 0.763
17-26 136 98+ 371 0.724
27 and up 67 46+ 20+ 0.694

TABLE V
FOOTBALL CARDS

Payoff for Correctness
$1 Bet if per Game to

Selections 1007% Correct Break Even

3 5 0.585
4 10 0.562
5 15 0.581
6 25 0.585
7 35 0.604
8 50 0.613
9 75 0.618
10 100 0.631

least squares nature of (6), ratings for team iand teamj, opponents
in game M + 1, must satisfy

)1ri = n(i) + I [pi + WVM+l + 11(i)ieold]

rjj 1 [Pi - wM+l + n(i)Pjold]ni=i(j) + 1

(10)

(1 1)

where 1iold and 9jold satisfied (6) for n(i) and ni(j) games, re-
spectively. WM+ 1 amount by which team i defeated team i in
game M + 1.

Simultaneous solution of (10) and (11) yields new ratings P1
and Pj where n(i) and n(j) are assumed equal:

A= Pio
± WM+l - ('i0old - jold)

n(i) + 2

WM+l - (Pi0old jold)
Pj = j)old 2

(12)

(13)

Equations (12) and (13) are used even when nI(i) and n(]) are
unequal. In a study of half of a pro football season, (12) and (13)
yielded essentially the same accuracy as (6).

COLLEGE BASKETBALL EXAMPLE

Suppose Arizona, alphabetically the second team, with a

rating of 116 won by 24 over UCLA, alphabetically the I 12th
team, with a rating of 102. Suppose both teams had played eight
games prior to their encounter. Their new ratings would be,
respectively, P2 = 116 + 1 = 117 and P112 = 102 -1 = 101.
In a rematch, Arizona would be a 16 point favorite.

COLLEGE BASKETBALL RESULTS

Table VI shows college basketball results for 130 teams over

two seasons. In 1926 games, the computer exhibited 69 percent
accuracy. The average error in predicting the point spread was
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TABLE VI
COLLEGE BASKETBALL ACCURACY PER SEASON

Average Error
Magnitude of
Predicted Point

Season Games Right Wrong Accuracy Spread Champion Rating

1972-1973 876 596 280 0.680 9.5 UCLA 124.5
1973-1974 1050 734 316 0.699 10.0 UCLA 121.9
Total 1926 1330 596 0.690 9.8

9.5 points per game. Because of the large number of games per
season, predictions seldom appear in print, except for tournament
games at the season's end. Statistically significant comparisons
therefore were not possible.

CONCLUSIONS

It was shown that the least square procedure, implemented on
a digital computer, can achieve accurate predictions in college
football, pro football, and college basketball.
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Book Reviews

Prozessidentifikation-Identifikation und Parameterschatzung dyna-
mischer Prozesse mit diskreten Signalen (Process Identification-
Identification and Parameter Estimation of Dynamic Processes with
Discrete Signals)-R. Isermann (Berlin: Springer-Verlag, 1974, 188 pp.).
Reviewed by George M. Siouris, Aerospace Guidance and Metrology
Center, Newark Air Force Station, Newark, OH 43055.

Since the first IFAC Symposium on identification held in Prague,
Czechoslovakia, in 1967, the field of identification and parameter
estimation has come of age. This is attested by the great number of
papers that have been published in recent years.

The present book is applications oriented. Emphasis is placed on

small digital computer applications and the determination of the
mathematical model for the static and dynamic behavior from input-
output measurements. The identification and parameter estimation
methods treated can be evaluated on a small digital computer and are

suitable for a number of applications, including biological and economic
processes. Plant modeling and identification usually require a great

deal of effort before the convenient linear approximations are known.
The selection of these plant models depend to a large degree on the
available a priori information about the plant. If this information is
not available, recourse is made to experimental techniques on the
model. The model may be derived from basic principles, a priori
knowledge, or statistical analysis of data. With the model comes an

understanding of the process, the relative effect of various process

parameters, and their interactions. There are 16 chapters in all.
Chapter introduces the subject, states the problems of process

identification, and classifies the identification procedures. Chapters
2 and 3 treat time-discrete signals and processes, and correlation
analysis. Treated here are the usual topics of deterministic and stochastic
signals and processes, stationary processes, autocorrelation and cross-

correlation functions, correlation analysis of linear dynamic processes,

and binary test signals. These two chapters may be omitted by readers
familiar with the content matter, while they may serve as a good
review for other readers. Chapter 4 covers the least squares method.
Topics addressed include static and dynamic processes, recursive
least squares, and weighted least squares. Chapter 5 is devoted to
stochastic approximation. Unlike the recursive least squares, the
stochastic approximation is more amenable to numerical computation.
With this method one can obtain recursive algorithms when the on-line
estimate is difficult to derive. The next chapter, Chapter 6, titled
"Generalized Least Squares Method," is a natural extension of
Chapter 4, and discusses briefly one-stage and recursive generalized
least squares.

In Chapter 7 the reader will find a short description on instrumental
variables. As in the previous chapter, the material is divided into one-
stage and recursive cases. Chapters 8 and 9 are devoted to the maximum
likelihood estimation and the Bayesian estimation theory. The various
parameter estimation methods and their relationship with one another
discussed up to this point are summarized in Chapter 10. Chapters
11-13 treat the least squares as applied to response functions in
deterministic test signals, stochastic approximation, and correlation
analysis, respectively. Chapter 14 compares the parameter estimation
methods. After an overview of the various parameter estimation
methods, the remainder of the chapter is devoted to the comparison
of performance indices and gives numerical examples of selected
processes. The chapter concludes with the graphical representation
of six parameter estimation methods for three error model processes.
Much of the material in this chapter is based on the author's work
presented at the Third IFAC-Symposium on Identification. Chapter
15 contains useful information of the model order and dead time.
Two numerical illustrative examples are given, and the results are shown
in graphical form. The last chapter, Chapter 16, treats various problems
such as choice of input signals, choice of the sampling time, the


