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Fig. IL. Example.

random value (parameters are (N - 1), PF) and P, is the prob-
ability of a given point x to be in the parallelotope Vx centered

in x:
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Let us calculate E(q). Ni,...i" is a binomial random value
(parameters are N and Pi,... in). So
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Coarse-Fine Template Matching
AZRIEL ROSENFELD, FELLOW, IEEE, AND

GORDON J. VANDERBRUG

Abstract-The computational cost of template matching can be
reduced by using block averaging to decrease the spatial resolution of the
template and the input picture, applying the low-resolution ("coarse")
template to the low-resolution picture, and using the full-resolution
("fine") template only when the coarse template's degree of mismatch
with the picture is below a given threshold. This correspondence discusses
the degree of resolution reduction that should be used, under various
conditions, in order to minimize the expected computational cost.

I. INTRODUCTION

In [1], a method of reducing the computational cost of
template matching was described. This method applies a sub-
template to the input picture and uses the rest of the template
only at positions where the subtemplate's degree of mismatch
with the picture is below a given threshold. A probabilistic
analysis of this approach was given, with emphasis on the choice
of subtemplate size to minimize the expected computational cost.
The analysis assumed that the average absolute difference in

gray level between template points and corresponding picture
points is used as the mismatch measure.

This correspondence treats an analogous method of two-stage
template matching in which a reduced-resolution template,
rather than a subtemplate, is used for the initial "screening" of
the picture. The template is divided into blocks, which we assume

Manuscript received July 8, 1976; revised September 9, 1976. This work
was supported by the National Science Foundation under Grant MCS-
72-036 10.
The authors are with the Computer Science Ct-nter, University ot

Maryland, College Park, MD 20742.

104

. 0 *

0

:9.1

0 0 .

0
0

E(Nil ...O NP, I... il



CORRESPONDENCE

here to be of equal size (let us say containing m pixels each), and
the average of each block is computed. The picture is averaged
over an m-pixel neighborhood, of the same shape as the blocks,
at each point. We compute the average absolute difference
between the template block averages and the picture neighbor-
hood averages at the corresponding picture points, for a given
position of the template. If this average is below a certain
threshold, a possible match between template and picture has
been detected in the given position. In this case, we match the
full-resolution template and picture at that position, by com-
puting the average absolute difference of their individual gray
levels at corresponding points, in order to investigate whether
the detected match is a true match or a false alarm.

In this two-stage template matching process, the expected
computational cost at each point of the picture (ignoring the
cost of the averaging operations; see the next paragraph) is of
the form c + pd, where

c cost of applying the "coarse" (i.e., reduced-resolution)
template,

p probability of a below-threshold mismatch to the coarse
template,

d cost of applying the "fine" (i.e., full-resolution) template.

We may assume, as in [1 ], that the costs c and dare proportional
to the numbers of pixels in the coarse and fine templates (so that
c = dlm). If the coarse template has very few points, c will be
small; but under some circumstances, this will lead to a higher
probability of below-threshold mismatch, so that pd may be
large. We can now pose an optimization problem analogous to
that in [1 ]: Is there a degree of coarseness for which the expected
computational cost is a minimum?
The cost of block-averaging the template can be ignored in our

analysis, since this need only be done once, and when we are
calculating the total computational cost for every position of the
template relative to the picture, the contribution due to averaging
the template becomes negligible. It is harder to justify ignoring
the cost of averaging the picture, since this must be done in a
neighborhood of every picture point. However, if we expect to
match many different templates with the same picture, we can
share the cost of the picture averaging among these costs, since
the picture need be averaged only once.

It should be pointed out that the analysis in this correspon-
dence considers only the computational cost of the template-
matching process, and not the costs of errors (false alarms or
dismissals).

II. PROBABILISTIC ANALYSIS
As in [I], we assume that the picture consists mostly of

background (i.e., that points where the template matches the
picture are rare), so that the situation at background points
dominates the expected computational cost. Let us suppose that
the gray levels of background points have independent, identical
normal distributions with mean ,u and standard deviation a. Then
[2] the average of a block of m background points is normally
distributed with meanr and standard deviation a' = v/Am.

Let the average gray level of the ith block of the template be qi.
Then the (signed) difference between qi and the average of a
block of background points is normally distributed with mean
Pi = ,- qi and standard deviation a'. The absolute value of

' One could also argue that averaging the picture can be done at lowcost by special-purpose hardware, or optically; but if this is true, then thetemplate matching itself could presumably also be done that way.

this difference is not normally distributed; but as derived in [1],
it has mean

2o' U'2/a,2e a'2 + Xi [2F1(i/a')- 1]

and variance
2 '2 2 2ai =7a + Pi -i

If there are sufficiently many blocks, we can assume (by the
central limit theorem [2]) that the average absolute difference is
normally distributed; for in blocks, the mean and standard
deviation of this average are given by

in 1 | 2
se-= - E Vi and a = - ln i=i n1 i=

These results are exactly the same as in the subtemplate case
of [I ], except that here vi and ci are functions of a' a= Vl1m
rather than of the original a.
Based on this analysis, it is straightforward to compute

numerically the probability that the average absolute difference
is less than some given threshold; this is the false alarm prob-
ability p of Section I. By doing this for various m's (i.e., various
degrees of coarseness), we can determine-for any given
template the expected computational cost as a function of m,
and can find the m for which this cost is a minimum. Note that
for a given template, the number of blocks (n) varies inversely
with the block size (m), since their product is the total number of
points in the template.

III. QUALITATIVE DIscuSSION
In Section IV we shall compute the false alarm probability

and the expected computational cost for cases involving a picture
background composed of normally distributed noise, and a
template having constant gray level, either equal or unequal to
the mean of the noise. The following qualitative remarks can be
made about these cases.

Let the template gray level z be different from the mean p of
the picture background. The coarser we make the template, the
lower the standard deviation of the averaged picture becomes.
Thus the expected absolute difference between a template block
average (which is still z) and a picture neighborhood average will
tend toward the nonzero value lp - z 1. If this value is sufficiently
high relative to the threshold t, the probability of the average
absolute difference being below t i.e., the false alarm probability
p should decrease. On the other hand, the coarser we make the
template, the fewer blocks we have, so that the variability of the
average absolute difference becomes greater, and this may
increase p. Coarsening the template makes c decrease; but since
there are two factors affecting p in opposite ways, the expected
cost c + pd may turn out to have a nontrivial minimum.
Analogous remarks can be made for the case in which z = .

Here, as the template gets coarser, the expected absolute dif-
ference between a template block average and a picture neighbor-
hood average tends toward zero, so that for any threshold t, the
false alarm probability p should increase. The increased vari-
ability in the average absolute difference may also tend to
increase p. On the other hand, coarsening the template decreases
c; thus the expected cost ought to have a nontrivial minimum
even for low thresholds.

For the subtemplate problem, decreasing the size of the sub-
template decreases the cost c, but it increases the false alarm
probability, since the average absolute difference has greater
variability; and as seen in [I ], this gives rise to nontrivial minima
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in the expected computational cost. Note that for both problems,
if we make the subtemplate too small or the coarse template too
coarse (i.e., the number n of blocks too small), the central limit
theorem no longer applies, so that our analysis becomes
unreliable.
Our examples of templates having constant gray level are not

very realistic; but the same analysis can also be used in more
realistic cases. Suppose that the template consists of two kinds
of points, light and dark, which have gray levels z and w, respec-
tively, where z u w; in other words, these levels differ
by equjal amounts, but in opposite directions, from the picture
mean p. When we divide the template into blocks, let us do this
in such a way that each block consists entirely of light points or
entirely of dark points, so that the average of each block is
either z or w. (We have nowhere assumed that the blocks must
have simple shapes; they can be arbitrary sets of template
points- and corresponding sets of picture points as long as
they have the specified size m.) Thus the absolute difference
between a template block average and a picture "neighborhood"
average has expected value lu - z - l, - wl, and our dis-
cussion of the constant gray-level case applies in this case too.
An interesting modification of our optimization problem is

obtained if we allow the threshold to vary with the amount of

averaging, e.g., we use t/NIm when the block size is m, to com-
pensate for the fact that the variability of the absolute differences
has been reduced. This idea will not be investigated further in
this correspondence.

IV. EXPERIMENTS

A program similar to that in [1] was used to compute false
alarm probabilities and expected computational costs for coarse-
fine template matching, using the equations in Sections I and II.

Let the picture background mean be u = 32, and its standard
deviation be a = 10. Let the template have 64 points, each of
gray level 32. Then the false alarm probabilities p, for various
values of the block size m and threshold t, are shown in Table I.
The corresponding expected computational costs, assuming that
c and d are equal to the numbers of points in the coarse and fine
templates, respectively, are shown in Table II. It is seen that
nontrivial optima, between m = 4 and m - 16, do indeed exist.

Tables III and IV give analogous results for the case where the
template has constant gray level 28 rather than 32. In this case

there are nontrivial cost minima only for relatively large values
of t. For smaller t's, false alarms are rare even for large m, since
the expected absolute difference between template and picture
is large; thus for small t's, the expected cost keeps decreasing as

m increases, as discussed in Section lI.
In these examples, we have used block sizes m that evenly

divide the number of points in the template. One could also use

"blocks" containing noninteger numbers of points (i.e., one

could divide the template into n equal-area regions and compute
the average gray level in each region by resampling; the same

would have to be done in computing the neighborhood averages
in the picture.) This would allow the data in Tables I-IV to be

refined, so that the minima could be located more exactly. On

the other hand, it would not normally be desirable to make the

number of blocks (n) a noninteger, unless there is some special
reason for using blocks of unequal sizes (e.g., we want to preserve
the detail of some parts of the template, but we are interested

only in the gross structure of other parts).

V. CONCLUDING REMARKS

Coarse-fine template matching provides a potential speedup
of the template matching process by checking the gross structure

m = 2

t

.01 0

.02

.03

. 04

R 16 32

.002 . 0 35 . 15(

0 .00 . 01 9

0

.165 421

.003 .108 .445 .733

.00 .026

.05 .00 .133

.345 .757 .93!)

.669 .937 1

TABLE II

EXPECTED COMPUTATIONAL COSTS FOR CASE IN TABLE l*

m = 2 4 8

t

.01 32 16 8.11-6

.02 32 16.009 9.226

.03 32 16.171 14.932

.04 32.001 17.637 30.066

.05 32.030 24.488 50.804

16 32

6.244 11.609

14.544 28.934

32.462 4A.2L5

52.456 61.491

63.993 66

* The minima are underlined.

TABLE III
FALSE ALARM PROBABILITIES FOR TEMPLATE HAVING CONSTANT

GRAY LEVEL DIFFERENT FROM BACKGROUND MEAN
32

m = 2

.03 0

.04 0

.05 . 000

4 8 16

.000 .007

302

. 0 4 2.027

.002 .031 .083 .112

.014 . 1 05 .201 .240

.o6 .001 .064 .258 .385 .424

TABLE IV
EXPECTED COMPUTATIONAL COSTS FOR CASE IN TABLE III*

m 2 4 8 16 32

t

. 03 32 16.012 8.434 5.704

.04 32 1.6 .130

.05 32.003 16.893

10.002 9.306

4 . 6 65

9 .1 39

14.689 16.850 17.392

.06 32.044 20.083 24.498 28.652 29.150

* For t = .03 and .04, the cost continues to decrease even at the
highest degree of coarseness. For t = .05 and .06, the minima are

underlined.

of the template against a correspondingly coarsened picture,
which permits rapid rejection of mismatch positions. This

concept is a special case of the "planning" approach to scene

analysis discussed by Kelly [3], where edges detected in a

coarsened picture are used as clues to guide the tracking of these

edges in the original picture.
Sampling (i.e., using subtemplates) and coarsening are two

approaches to reducing the cost of template matching by a

preliminary screening process. In general, we could compute the

values of an arbitrary set of properties of the template (not

necessarily sample gray levels, or block average gray levels), and

TABLE I
FALSE ALARM PROBABILITIES FOR TEMPLATE HAVING

GRAY LEVEL EQUAL TO BACKGROUND MEAN
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match these values against the same property values measured
at the given position in the picture; if a below-threshold mismatch
of the property values occurred, we would investigate further by
matching the template to the picture in that position. (Of course,
this assumes that the cost of computing the property values can
be ignored; see the end of Section I.) These remarks define a large
class of methods of reducing template matching cost. The
specific method appropriate to a given situation will, in general,
depend on the nature of the picture and the template.
A general discussion of methods of detecting positions in

which a template and a picture are likely to match can be found
in Barnea and Silverman [4]. The specific technique of block
averaging, as applied to a variety of picture processing operations,
has been investigated by Riseman [5] and Tanimoto [6]. The
chief contribution of the present paper is its quantitative treatment
of the block-averaging approach, demonstrating that for specific
amounts of averaging, the expected computational cost of the
template-matching process is minimized.
We have seen that in some cases, the expected computational

cost of coarse-fine template matching should be minimized for a
large amount of coarsening (Section III). When the template and
picture mean gray levels are equal, however, it is nontrivial to
determine the degree of coarsening that yields the minimum
computational cost; but the minimum can be found numerically
(Section IV). In summary, the results of this correspondence
confirm the value of coarse-fine matching as a method of reducing
the computational cost of template matching operations.
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Extraction of Multiple Regions by Smoothing in
Selected Neighborhoods

FUMIAKI TOMITA AND SABURO TSUJI

Abstract-A fixed smoothing method for extracting regions in a

picture does not work if it has too many regions. An improved smoothing
method which averages gray values in a selected neighborhood around
each point in the picture is presented. This filtering process is iterated
until an easily distinguishable picture is obtained.

I. INTRODUCTION

Recently, L. S. Davis et al. discussed simple methods of
extracting regions from a picture by averaging the picture and
then thresholding it [1]. If the picture contains the regions of
which the average gray levels lie in two disjoint ranges, a fixed
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Fig. 1. (a) Picture containing four regions of different average gray level;

probabilities of black points are 0.1, 0.2, 0.4, and 0.8, respectively.
(b) Gray-level histogram of picture obtained by local averaging (a), using
16-by-16 neighborhood. (c) Regions obtained by thresholding locally
averaged picture.

smoothing method can separate the two region types. Un-
fortunately, this method does not work if there are three or
more ranges, and regions in the high and low ranges are adjacent
one another.

This correspondence presents an alternative averaging method
to overcome the difficulty by selecting a homogeneous area
around each point in the picture and averaging the gray values in
it. This filtering process is iterated until one can obtain a picture
with easily distinguishable regions.

II. SELECTION OF NEIGHBORHOODS FOR LOCAL AVERAGING

The procedures of detecting the regions by the fixed smoothing
method are as follows.

1) Generate a new averaged picture in which the gray level of
each point is the result of local averaging gray levels in a
fixed size neighborhood of the corresponding point in the
input picture.

2) Select thresholds by inspecting the gray level histogram of
the averaged picture.

3) Threshold the averaged picture to obtain regions.
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