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An Application of Relaxation Methods to
Edge Reinforcement

BRUCE J. SCHACHTER, AMOS LEV, STEVEN W. ZUCKER.
MEMBER, IEEE, AND AZRIEL ROSENFELD, FELLOW, IEEE

Abstract An iterative scheme is used to reinforce the continuous
edges detected by a differencing operation. Edges reinforce other
edges that continue them and also interact with nearby nonedge
points in specified ways. The slopes of the edges are also iteratively
adjusted. Examples of the performance of this scheme are given.

I. INTRODUCTION
Interest has recently arisen in a class of iterative techniques,

known as "relaxation methods," that can be used to label parts of
an image or scene. For a general introduction to relaxation
methods and some examples of their use see [1], [2].
One of the applications in which relaxation techniques have

proved useful is the detection of long, smooth curves in an image
[3], [4]. Initially, line detection operators (in many orientations)
are applied to the image, and their outputs are used to determine
an initial level of confidence, or "probability," that each point lies
on a curve in a given orientation. These probabilities are then
iteratively reinforced: a point's probability of lying on a curve is
reinforced by the probabilities of other points lying on curves that
smoothly continue it. This reinforcement process is applied in-
dependently to every point. After a few iterations of the process,
points that lie on smooth curves tend to have high probabilities of
being curve points, while other points' probabilities are low.

This correspondence presents an analogous application of re-
laxation methods to the detection of major edges in an image.
Initially, a "gradient" edge detection operator is applied to the
image; this yields an edge strength (or "probability") and orienta-
tion at each point. These probabilities are then iteratively rein-
forced, much as in the curve case (except that edge orientations
must be specified modulo 360' rather than modulo 180°, to insure
that dark sides correspond to dark sides and light sides to light
sides). As we shall see, this reinforcement process can be used to
enhance major edges.
The general idea of the edge reinforcement process is as follows.
1) Initially, the magnitude and direction of the image gradient

are computed at each point (x,y). The magnitude at (xy), divided
by the max of the magnitudes over the entire image, defines the
"probability" of an edge at (x,y). [This definition is somewhat
extreme; one could, alternatively, divide by the max of the magni-
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tudes over some specified neighborhood of (x,y).] For the details
of this, see Section 1I-A.

2) The reinforcement process defines a new edge probability at
(x,y) in terms of the old ones at (x,y) and its neighbors. The
computation of the new edge probability can be broken into
several steps as follows.

a) Interactions between edge and nonedge probabilities:
Coupling coefficients Ree' Ren Rne, and Rnn are defined between
the probabilities at pairs of neighboring points. The edge/edge
coefficient Ree depends on the edge slopes at the two points, on the
slope of the line joining the points, and on the distance between
them. Collinear edges reinforce, and anticollinear edges weaken
one another. The particular Ree used in these experiments is
defined in Section Il-B. Similarly, edges are weakened by non-
edges collinear with them, nonedges are strengthened by edges
alongside them, and nonedges are strengthened by edges near
them. Definitions of the Ren Rne, and Rnn used in our experiments
are given in Section Il-C.

b) To compute the new edge probability resulting from these
interactions, we first compute weighted sums of the edge and
nonedge probability increments (see (6) and (7) in Section II-D).
These sums are then normalized to lie in the range [- 1,1] (see
(8)). They are used to update the edge and nonedge probabilities
(9) and (10), and the updated values are normalized so that they
sum to 1 (see (11)). For the details of this process see Section II-D.

II. EDGE REINFORCEMENT SCHEME

A. Initial Edge Values
A digital gradient operation is applied to the given imagef!. If

we denote the x and y components of the gradient by A, f and
Ay f then the magnitude and direction of the gradient are given by

mag-/(Ax f) + (AY f)

and

O=tan- Ar )

We define the "probability" of an edge at a given point (x,y) by

p( ))= mag (x,y)
max mag (u,v)

where the max is taken over the entire image. The probability of a
nonedge at (x,y) is defined as P(x,y) = 1 P(x,y). Clearly, 0 < P,
P < 1 for all (x,y). In order to facilitate the reinforcement process,
P(x,y) was never allowed to take on the value 1; at points where
mag (x,y) took on its maximum value, P(x,y) was set to 0.9.

B. EdgelEdge Interaction
Let a be the edge slope at (x,y), ,B the edge slope at (u,v), " the

slope of the line joining (x,y) to (u,v), D the chessboard distance'
from (x,y) to (u,v), i.e., max (0x - uI, IY - vI). Then the
edge/edge reinforcement process between the points (x,y) and (u,lv)
has strength given by

Ree = cos (a( - ") cos (f3 - y)/2 (2)
To see the significance of this definition, we consider a few

simple examples. In these examples, the arrows indicate the direc-
tion along the edge, with the dark side of the edge on the left.

' Using Euclidean distance would have weighted diagonal adjacencies more
weakly than horizontal or vertical adjacencies, resulting in an iterative weakening of
diagonal edges.
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We see from these examples that parallel and perpendicular edges
have no effect on one another, that collinear edges reinforce each
other to a degree that decreases with distance, and that anticollin-
ear edges weaken each other, decreasingly with distance.

Other edge/edge reinforcement schemes can easily be devised.
For example., in case a) one might want to strengthen the stronger
of the two edges and weaken the weaker onie [5]; this process
would have the effect of thinning thick edges. In case e), one might
want the edges to weaken one another, and in case f) to reinforce
one another, since in the former case the light side of one edge
corresponds to the dark side of the other, while in the latter case
the light sides coincide. Also, the reinforcement weights need not
vary as the cosines of the angles, nor fall off exponentially with
distance. However., in the present study, only the simple reinforce-
ment scheme defined by (2) was used.

C. Initer'ac'tiOnIs Intulolriuiq Noliedges
Besides the edge/edge interaction described in Section II-B,

which occurs between the edge probabilities P, there are also
interactions involving the nonedge probabilities P.

1) The edge probability at (x,y') is weakened by the nonedge
probability at (I,j) to the degree Re, defined by

Here we see that edge poinlts alongsidcIe noriedge points Stithc
tiem, while edge poinits collincai with tnonedgc poinits hzave rio
eftect oil thiemil. Othiei- 1nonledge 1l'1trCtl-11 Snt'6l.licioieheme Uld 'lv
beenidvcised: foi- example, thle R,, rmuki, could ha hetr2; uscd
for R,,,t too. How evi, in tlhjs correspondtcc wve fvix studicced mlI
the sclhemes definied bv (5).

D. CominMed Reimlorelmelit Procc ss

For each point (XvY), the net effect of its neiglhboring poinits onl
its edge probability P[(x,v) and noniedge probability
P(x\',vS)- I P(.<V7I') is computed as follows. I et

Q('X'7Y)C-E P(u,1,t)Rt','((x,J)Juxl5t))Q(x.v

4-'4 44X'

(6)

Q(X,v) , C X P(= u)R^,,((x.v).(nd ))

=A,(. 1.)

(7)

Here Cl. C,. ('3. C4 are constanits whIose sLum is takein to be onle.
Let

Q Q
QK=I-QI-- (8)

Q- Q

IQ
I' 'Q

Finally, let

pJ = I[I +Q]

P = Pl + Q]
(9)

(10)
R,i , mmil [0, cos (2x 24,)/20]

2) The nonedge probability at (xj) is affected by the edge
probability at (ni) to the degree R,,, defined by

N,t. = (1- cos (2/} 2)) 2" 1 (4)

3) The nonedge probabilities at (X,) and (ue) reinforce each

other to the degree R,,, defined by

Rttl=l 2' (5)

The R,,,, reinforcement process is easy to understand; nonedge
probabilities are reinforced by other nearby nonedge probabili-
ties. To see the significance of the R,. process, we again consider

some simple cases (here the arrows indicate edge points, as in

Section 11-B, and the dots indicate nonedge points).

Case e
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Thus nonedge points collinear with edge points weakeni them,

whereas nonedge points alongside edge points have no effect on

them.
Similarly, the R,,. process is illustrated by the followinig cases.

Case /3 ^! (1- cos (2,B- 2,))/2"1"

a) i 90 0 123")
1) 90 90

P'

P. P.'
(11)

This process is then iterated, with P)"" replacinig P. and I --P!
(- P/(P, + P)) replacing P.

In addition to computing new edge anid nonedge probabilities
for each point at each iteration, we also recompute the estimated
edge direction at each point. This is done as follows. Let

A,.(N.x) WP(X.v) cos (Of(Yx'))

+ LL(s Rt((\l)l-))COS (t}(u,rl))
.44

A J(x.v) WP(x.v) Sin (f)(x.y))

+- E P(u,r)R),((x.v)4(nu)) sin (O(ux))

Theni

X14A(.x y) - tan (A(xv) A. ( x,i'))

Note that for large values of the constant j4', 0"-"' is close to

while for small values, it is strongly influenced by the neighlborinig
O's.

III EXPERIMENTA\t, RisuiiTS

Fig. I shows a portion of a LANDSAT image of Monterey, C'A.
Fig. 2 shows approximate gradient magnitudes for Fig. 1; the

magnitude at a point was computed as the max (rather than

square root of sum of squares) of the first differences in the .X and v

directions. Fig. 3(a) shows the gradient values displayed as an

(3) and
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- ) I-) 1)Cos (Y -,,) Cos (P

-4- C, v),(ux))
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Fig. 1. Input image.

(a) (b)

Fig 2. Gradient magnitudes for Fig 1

(c) (d)

Fig. 3 Gradient magnitudes and directions for Fig 1. displayed as intensities and
orientations of T-shaped symbols.

(e) (f)

Fig.5. Fotir iteratioris of cdge rciiforcement process applied to noisy edge data (a)
Original picture (leases). (b) Edge output for (a) with noise added (c) (f) Four
iterationis.

array of T-shaped symbols, where the intensity of a symbol corre-
sponds to the gradient magnitude. and its slope (quantized to a
multiple of 222-) indicates the gradient direction, with the leg of
the T pointing toward the light side of the edge.

Fig. 4 shows the results of three iterations of the edge reinforce-
ment process, as described in Section 11, applied to Fig. 3. In this
implementation, the points outside a 5-by-5 square centered at
(x,V) were ignored: thus only 24 (U,l)'s in'1uenced a given (x,y).
The values of the constants of Section Il-D were as follows:

C, = 0.866 C, = 0.124 C3 = C4 = 0.005 W= 3.

(2)

(3)
Fig. 4. Three iterations of cdge reiitiorcement process applied to Fig 3.

Further iterations yielded little change from the result shown in
the last part of Fig. 4.
The results of the iteration process are somewhat sensitive to

the choice of the C's. For example, if C1 is too large. edges will
thicken and will be extended into nonedge points: while if C, is
too large. gaps will appear at weak spots in the edges and at sharp
angles. Perhaps different C's should be Ltsed at each point, depend-
ing on the level of edge activity in the vicinity of that point, and
the values of the C's could also vary from iteration to iteration.
These ideas will not be pursued further here, but they should be
seriously considered in future implementations.
The iteration scheme has considerable noise cleaning power, as

shown by the example in Fig. 5. (This example used a more

(I)
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elaborate edge detection scheme developed in connection with a
relaxation-based noise smoothing process [6].) In Fig. 5, Gaussian
noise was added to the edge detector output,2 but a few iterations
of the reinforcement process delete nearly all of this noise. These
experiments used C1 = 0.706, C2 = 0.176, C3 = C4 = 0.059; note
that because of the smaller value of C1, some of the weaker, higher
curvature edges (e.g., at the upper right) have begun to disappear
by the fourth iteration.

IV. CONCLUSIONS
The experiments reported here confirm that iterative reinforce-

ment schemes can be used to "enhance" edge points belonging to
extended edges, while weakening or deleting noisy edge points.
The iterative process used was not designed to handle sharp
angles on edges; in spite of this, its performance seems reasonably
good.
Raw edge detector output is often quite noisy, so that it is

difficult to obtain good results from curve following or fitting
procedures applied to such output. In such a situation, iterative
procedures can be used to "clean up" the edge output and make it
more tractable to further processing. More specialized procedures
of this type, e.g., designed only for thinning thick edges, have
already been proposed [5], but the present work shows that a
general reinforcement process can also be carried out iteratively.3
Such processes could be implemented very simply and efficiently
on parallel array-processing hardware. It is expected that they will
come into increaing use over the coming years.
It should be emphasized that the results reported here are

illustrative of a wide variety of schemes that could have been used.
The reinforcement processes could have been defined and
combined in many different ways. The results obtained will cer-
tainly depend on how this is done. The question of how to choose
the reinforcement coefficients for a given image needs further
investigation. Also, no claim is made here about the convergence
properties of the process (see, however, [1] and [7]). However, it

does appear that a few iterations of the process tend to weaken or
eliminate noise while preserving long edges.
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Pattern Classification by a Learning Algorithm
Similar to Hebb's Modifiable Synapse

TAKASHI NAGANO

Abstract The capability of a learning algorithm like Hebb's
modifiable synapse (called "forced learning procedure" hereafter) is
discussed. The necessary and sufficient condition for a multiclass
pattern classifier with the forsed learning procedure to classify input
patterns correctly is introduced. Differences between the forced
learning procedure and the error correction procedure are also
discussed. Although the error correction procedure gives better
pattern classification than the forced learning procedure, hardware
systems with the forced learning procedure are more simply built up
than those with the error correction procedure. It is also concluded
that the forced learning procedure is a more plausible manner of
changing synaptic efficacies of nervous networks.

I. INTRODC CTION

Learning machines have been studied from various viewpoints
for almost twenty years since Rosenblatt proposed Perceptron [1].
Functions of these machines are roughly classified into two
groups: one is the pattern classification function [1]-[5], and the
other is the association function [6]-[9]. These functions are
produced by organizing learning machines according to certain
learning algorithms. Though various types of learning algorithms
for learning systems with a teacher have been proposed, they can
be grouped into one class called error correction procedures.
Much work has been done on the pattern classification capability
[10] and convergence of learning process of this type of algorithm
[5], [11]. They have been proved to be the best algorithm theor-
etically in the sense that they can classify two sets of input patterns
which are linearly separable, or that they can produce the opti-
mum decision hyperplane under a certain criterion even when two
pattern sets are not linearly separable.

These algorithms, however, do not seem to be the best when the
difficulty of the realization of their hardware systems is taken into
account. This correspondence reports the pattern classification
capability of a learning algorithm which can be built up as a
hardware system more easily than the error correction procedure.
It is also shown that this algorithm is plausible as a way of
changing synaptic efficacies (a kind of coupling coefficient be-
tween two neurons) of the nervous system, since it is similar to the
Hebb's modifiable synapse [12].

II. ERROR CORRECTION PROCEDURE

The following notation will be used in this paper:

U, (c = 1,2, ,n)
0
x = (XX21 .' v Xn)
C, (ot r1,2, ,m)
XX~= (X 1a7 , X2) '.. i vnx)(
W, (W Iax, W 27a ? ? Wn a)

W*
T.

d, ( = I Or O)

computational unit (Fig. 1),
threshold of U, (0 > 0),
input pattern,
class of input patterns,
input pattern in C3,
weighting function of U, (see Fig. 1),
weighting function after learning,
element supplying a desired output
signal to U,,
desired output of U, (the output of
T7),
summation of inputs of U, which is

defined by
YA(W,X)= >3 Win (1n

~W it N i
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