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TABLE II
VALUES OF a

p

(n-I 0 0.1 0.2 0.3 0.4 0.5

4 0.99 0.988 0.986 0.983 0.979 0.971
0.95 0.941 0.930 0.918 0.900 0.872

16 0.99 0.982 0.966 0.941 0.890 0.790
0.95 0.919 0.870 0.790 0.670 0.490

32 0.99 0.975 0.946 0.867 0.715 0.440
0.95 0.900 0.810 0.640 0.380 0.170

Evidently, if p < 0, a > e, but if p > 0, a < e. The effect of
positive values of p upon the confidence coefficient xc is given in
Table II for c = 0.99 and 0.95.

V. CONCLUSION

This correspondence has demonstrated that the presence of
intraclass correlation affects the confidence coefficients of the
confidence sets obtained under the assumption of independence
for the mean of a normal population with known dispersion
matrix and the dispersion scalar a2 in a2E with E known. Also,
the following was demonstrated.

a) If the sample is simply equicorrelated with positive coef-
ficient of simple equicorrelation, then the confidence coefficient
decreases with sample size.

b) If the sample is simply equicorrelated with negative
coefficient of simple equicorrelation (- 1/(n - 1) < p < 0),
then the confidence coefficient increases with sample size.

Therefore, to be sure about the accuracy of the inference
regarding the confidence coefficient, it is necessary to test the
sample for independence or for the type of correlation-positive
or negative. In case the sample is found to be positively correlated,
it is advocated that test statistics appropriate for simply equi-
correlated data be used. When the coefficient of positive simple
equicorrelation is known or has been estimated, the test statistics
appropriate for simply equicorrelated samples can be easily
derived from the corresponding statistics for the independent
samples.
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An Experiment with the Edited Nearest-Neighbor Rule

IVAN TOMEK

Abstract-A number of computer simulation experiments with the
nearest-neighbor classification rule are described. They include classi-
fication by the usual k-NN rule, classification with k-NN on a design
set edited once according to Wilson and classification with k-NN on a
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design set edited unlimited number of times by two methods described
in the text. Results of experiments indicate that editing improves per-
formance of the rule. This is not proved rigorously, but a possible ap-
proach to a proof is outlined.

INTRODUCTION

Let D be a set of samples from a d-dimensional Euclidian
space whose members are selected as follows. Select m = 1
with probability p, and m - 2 with probability P2 = 1 - PI
Given m, select x e D from a population with density qm(x). In
other words, D consists of samples from two classes whose
underlying density functions are qm(x) and a priori probabilities
p,, (m = 1,2). D will be called the design set and its members
labeled prototypes.
The k-nearest-neighbor (k-NN) rule is a method of classifica-

tion which works as follows. Given a sample y to be assigned to
one of the two classes, find the k nearest neighbors (kNN) of y
in D using a chosen definition of distance. Assign y to class m
(either 1 or 2) if the majority of its kNN belong to class m;
break ties arbitrarily. (In practice, k is usually odd to avoid ties.
This will also be assumed for simplicity in the following text
unless specified otherwise.)
Much research has been devoted to the k-NN rule (for a list

of references see, for example, Duda and Hart [1]). One of the
most important results is that k-NN has asymptotically very good
performance. Loosely speaking, for a very large design set, the
expected probability of incorrect classification (error) P achiev-
able with k-NN is bounded as follows:

P* < P < 2P*. (1)
Here P* is the optimal (minimal) error rate for the given under-
lying distributions pi, qi(x) (i = 1,2) (see [2]). In many situations
the rule performs almost as well as the optimal classifier [3].
Furthermore, it has been shown by Wilson [3 ] that the following
simple editing of D improves the performance of k-NN even
further:

1) classify each sample x(i) C D by k-NN using samples
x E D, x x(i);

2) form a new design set D' containing exactly those samples
from D which have been classified in accordance with their
actual membership in Step 1).

k-NN classification with D replaced by D' reduces the expected
error rate below that associated with D.

It is natural to ask what would similar editing of D' (leading
to D"), D" etc. do to the design set. Should we expect progres-
sively better and better classification, or will editing distort the
design set and result in deteriorating performance?
A satisfactory answer to this question has not been found yet.

The reason is, basically, the following difficulty. Wilson has been
able to show that if a design set is "very large" and consists of
independently chosen samples, then, under quite general con-

ditions, the asymptotic probability that a sample x classified by
its k nearest neighbors in D' is assigned to class C(l) is

Pc (C(l)/X) = (2)Plp+P(C(()/x)(/
PJP.o(C(I)IX) + P2PX(C(2)lx)

Here Poo(C(i)/x) is the asymptotic probability that sample x is
assigned to class C(i) by the k-NN rule with an "infinitely"
large design set D.

Unfortunately Wilson's proof depends on the assumption that
samples in D are chosen independently. Editing generates a

design set in which samples are not independent since retention
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Fig. 1. Distributions used in experiment.

or elimination of samples depends upon class membership of
the surrounding samples, and samples in D' are thus chosen in
function of their neighbors in D'. Wilson's proof thus cannot be
repeated beyond the first editing. If it could be proved that
Wilson's conclusion remains valid by editing-at least for a

restricted class of probability distributions-then it would be
possible to show that repeated editing of a "very large" design
set could in fact lead to the generation of a new design set D,,
allowing classification as close to optimal as desired. This is
shown in Appendix1.
The author has not been able to prove anything about the

extension of Wilson's result to repeated editing and has thus
resorted to simulation to obtain at least an indication whether
this quite plausible-looking assumption should be investigated
further. Results of these limited experiments (presented in the
next section) are quite encouraging, particularly for a modified
method of editing. This is in agreement with reasoning presented
in Appendix II.

The author would like to repeat that complete theoretical
justification of the main theorem presented in Appendix I is
not given. Results of experiments indicate that the described
methods indeed improve the performance of k-NN classification
considerably, and the problem is worth further investigation.
It is hoped that this paper will stimulate such research.

THE ExPERIMENT

Data and Output
In order to make it possible to examine a sufficiently large

number of situations in reasonable time, it was decided to
examine samples taken from one-dimensional pseudonormal
distributions. All experiments used distributions with means

0.0, 4.0, and standard deviations 5.0 (Fig. 1). Experiments were

run with 50, 100, 200, 500, 1000, and 2000 samples in each class.
Each experiment ran as follows.

1) The desired number of samples from both classes was

generated using a random number generator.
2) The generated design set was edited in several ways (des-

cribed below) thus giving a number of new design sets.
3) Asymptotical performance (expected error of classification)

was calculated on each set by first defining decision
boundaries inherent in the design set.

Steps 1), 2), and 3) were repeated a number of times (40 for 50,
100, and 200 samples, 30 for 500 samples, 20 for 1000 samples
and 10 for 2000 samples). In general, for design sets of smaller
size, the number of repetitions was larger. This was dictated
by the rapidly increasing processing times and the assumption
that larger design sets are more representative of the underlying
distributions and thus do not require that many repetitions.

Methods of Processing

The following methods of processing (editing) of the design
set were used:

1) Wilson's editing (as described in the Introduction),
2) unlimited repetition of Wilson's editing (in fact, editing

is always stopped after a finite number of steps because
after a certain number of repetitions the design set becomes
immune to further elimination),

3) editing by the "all k-NN" method. For a given value of k
and a given sample x this method works essentially as
follows:
a) i = 1, flag (x) = 1,
b) find i nearest neighbors of x: NN (i,x),
c) if the majority of NN (i,x) classify x incorrectly,

flag (x) = 0, end.
d) i = i + 1,
e) if i < k go to Step b), otherwise end.

After processing all samples from D, eliminate those with
flag (x) = 0. For all combinations editing was performed for
k = 1,3,5. Classification was performed for the same values of k.

Results and Conclusions

The most important result of the described experiments-the
averaged expected error-is shown in Figs. 2, 3, and 4. Perform-
ance of various methods changes in a somewhat unexpected
way-getting worse as the number of samples in the design set
increases. Let us note that the performance of individual tested
methods varied quite widely from one design set to another,
as could be expected with the chosen type of distributions. It
may be that a larger set of experiments should be performed
to give a more stable behavior. This was, however, beyond the
author's means.

Certain significant conclusions can be drawn from the presented
results.

a) Performance improves quite significantly with increasing
value of k. This is natural in view of the known results about
k-NN.

b) On the average, better classification is obtained in this
order:

1) unedited design set,
2) Wilson's editing,
3) unlimited editing,
4) "all k-NN."

c) The "all k-NN" method seems to be clearly superior to all
considered methods. This could again be expected in view of
the result about the speed of convergence shown in Appendix II.

It is hypothesized in Appendix I that k-NN editing progres-
sively modifies the original underlying probability distributions
and that these, in the limit, become disjoint in a way optimal for
classification: the ratio of the likelihood of finding the nearest
neighbor from a nonoptimal class to that of the nearest neighbor
belonging to the optimal class approaches to zero with editing.
This holds for all values of k.
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Fig. 3. Same as Fig. 2 for k = 3. D denotes "all NN" editing.
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Fig. 2. Average errors of classification (°0) versus number of samples in
original design set. k = 1 A for unedited design sets, B for Wilson's
editing, C for unlimited number of editing.
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If, for a particular point, this ratio is denoted as aN (for the
Nth iteration) then it is shown in Appendix It that aN+l < aN2
(exponential speed of "convergence," irrespective of the value
of k).
For the "all NN" elimination this inequality is replaced by

aXN+ < 2P(k)

where

p(k) [k 1]
[2]

(square brackets denote the integer part). The convergence,
according to this formula, should be much faster than that for

the ordinary elimination, and this is confirmed in our experiments.

CONCLUSION

Results presented in the main text indicate that classification
on edited design sets is worth further examination. It seems that

unlimited editing and "all k-NN" editing in particular could

result in design sets of a very desirable structure-essentially

* 6

Fig. 4. Same as Fig. 3 for k = 5.

representing nonoverlapping probability distributions. These

edited design sets would be very useful not only for k-NN

classification but for any type of classification at all. Editing
based on the k-NN rule could thus be a very desirable method

of preprocessing before classification. It is hoped that the reported
experiments will stimulate further research into the presented
problem.

44 - K
43 -

42

40 1

41 -

40 -

B

39

38

37

3639 - C

38 -

37

-Li u 11t,,u ,'1j 1 It tit]x ;--) ,,

450

c ,f 1 nrn 1) rarA



CORRESPONDENCE

APPENDIX I
It will be shown that if a hypothesis on the asymptotic be-

havior of probability densities is true, then repeated editing of a
very large design set generates eventually a design set which
allows almost optimal classification by k-NN. We will say that
the problem is well behaved if P(C(i)/x',N) can be replaced by
P(C(i)/x,N) for M and all required values of N. Here M is the
number of samples in design set D, D(N) is the design set ob-
tained from the original design set D by N editings, x' is the
nearest neighbor of x in D(N), and P(C(i)/x,N) is the probabil-
ity that x E D(N) belongs to class C(i). It is shown in Wilson's
paper that for a very general class of distributions the above
replacement is legal for D(1).

Theorem
Let the problem be well behaved. Let e > 0 be given. Then

there exists an integer m such that i > m implies
R(i) -* R(i) < R* + E

with probability 1, when the number of samples in D approaches
infinity. R(i) is the asymptotic expected error.
Proof

Let P(C(i)/x,N) be the probability that x E D(N) belongs to
class C(i). x E D(N + 1) is in class C(1) if and only if it is in
class C(1) in D(N) and the majority of k nearest neighbors in
D(N) is from C(1):
P(C(1)/x, N + 1) = CN

*P(C(Il)x,N) k" Pi(C(l)/x',N)
j>kl )

. pk- i(C(2)Ix',N)
(with kI = [k/2] the integer part of k/2, k odd and CN a
normalizing constant).

If probabilities P(C(i)/x,N) are well behaved, we can replace
P(C(i)/x',N) by P(C(i)/x,N). This means that if

P(C(l)/x,N) = a(x,N) * P(C(2)/x,N)
then

a(x, N + 1) = P(C(1)lx, N + 1)
P(C(2)/x, N + 1)

(3)

E£ k

) a(x,N) * P"(C(2)lx,N)
X(x,N) jk

I k

0(j)a(X,N) Pp(C(2)lx,N)
so that

yi ( .A(x,N)
ax(x, N + 1) = a(x,N) j>k1( (4)

E
k Mi*a(x,N)

ji'kl j

This means that if a(x,2) = a(x,l) then

f, = a(x,l) = x(x,2) = *. (5)

(according to (4)). For (5) to hold the following must be satisfied

(k6(3) =>kl J i

E (k)
or

M (k fl i k( fli (6)
i>kl i.jkl \J

However,
= k~ (fik J-I /J

iS5kl J

and this equation has root ,B = 1. For a > 1, y(a) > 0 and for
a < 1, y(a) < 0 so that ,B = 1 is only real positive root of (6).
(We are interested only in real positive roots.) Since we are
interested only in the value of N and not parameter x at this
point, let us write aN instead of a(x,N) to make notation simpler.
The fact that (6) has exactly one positive root means that if

a, > fithen
a1 < a2 < a3 < ...

and if al < fl then
a, > a2 > a3 >

This can be seen from (4). The series {ci} thus has a limit A(aj).
If or, > 1 then A(a,) = oc and if al < 1 then A(aj) = 0: let
a, > 1. Let us assume that A(ax) < oo. Since A(aj) must be
positive (> 1), b(;i) also has a limit which is 3(A(a1)). This
means that

A(aj) = lim aN = lim aN+1
N- oo N o

so that
= lim aNX 6(aN) = A(cal) * e5(A(ccI))

c5(A(al)) = 1.

However, this implies that A(al) = 1 which is impossible. This
means that A(a,) must be oo. Similarly A(al) = 0 for a, < 1.

Let us now partition S into S(O) (part of S where plql(x) =
p2q2(X)), X and Y. X contains all points in which the probability
of incorrect assignment is bounded by a fixed number B(1):
O < B(1) < 0.5 from above. Y contains all the remaining points
but is small. Let, for a given e > 0, Y be such that the expected
error on Y does not exceed e:

E r(x,1) < E
y

and probability of nonoptimal assignment is at least B(1)
everywhere in Y. (For given distributions, B(1) is thus given
by the value of e.) Such partitioning is always possible if we
choose B(1) sufficiently close to 0.5.

Let us now denote the probability of assignment in agreement
with the optimal rule by S(x,N) (for point x E D(N)) and

S(x,N) = 1 - S(x,N).

(We thus have S(x,N) > B(1) in Y and S(x,N) < B(1) in X.)
For the calculation of the expected error of classification we
thus have

r(x,N) = pq(x)5(x,N) + Pq(x)S(x,N)
where the barred probabilities are those associated with classes
chosen by the optimal rule and the unbarred with the comple-
mentary class. We have

R(N) = E r(x,N) = f r(x,N) dx
ss

= f pq(x)3(x,N) dx + X 5q(x)S(x,N) dx

< f q(x) dx + f pq(x)S(x,N) dx

= R* + R'(N)
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where

R'(N) A fXuJ Y pq(x)3(x,N) dx c B(N) f pq(x) dx + a

= B(N)- C(X) + a.

Here C(X) is a finite constant whose value depends upon the
definition of set X. B(N) is related to series {fa} in the following
way. B(1) defines both an upper bound on S(x,N) on X and with
the corresponding lower bound on S(x,N) the first term of the
series: a,. Since B(1) < 0.5, a, < 1. This means that aN -+ 0
for N -e x. Since S(x,N) + S(x,N) = 1 this implies that
B(N) -e 0 with N -e oo and so

lim R'(N) = lim B(N)* C(X) + a = e
N-co

This completes the proof of the theorem.

APPENDIX II

The proof given in Appendix I will be used to show that the
rate of convergence from the original distributions to the disjoint
ones is very fast. Furthermore, the "all NN" rule will be shown
to be converging much faster than the ordinary k-NN rule.
From the derivation in Appendix I we have

j>kl ()

E (k) aN
J:skl j

k1y_ (k'aN * aN
Jk

j

ikN
k

Y, J)
which holds for aN < 1. This shows that the speed of convergence
is exponential, and thus very few iterations will considerably
improve the suitability of D for classification.

Let us now consider "all NN" classification. In this case
x E C(1) r D(N + 1) if and only if the majority of its 3 and 5
and ... k nearest neighbors from D(N) are from C(l). Using

kl(l) = [1/2]

and

p(k) rk +
[2 ]

for k odd we have

H= *,k j> (l) () 2p(k)
aN+1 = aN H ,N J

I=1,3,- * *,k Jskl(l)

This shows that theoretically "all NN" elimination converges
much faster than ordinary k-NN elimination, particularly for
larger values of k.
The approximation of aN+ 1aN used above is good for small

values of k. For larger values of k the actual ratio is, in fact,
smaller (for aN < 1) and convergence faster. This means that
for larger values of k convergence is faster than for smaller values.
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