
CORRESPONDENCE

Note that the complexity of the system being analyzed is a

function of the conceptual system. Remarks in the case of the
former hold as well for the latter. Depending on the conceptual
apparatus used, many things may become redundant which
otherwise may not be so. As in the case of the system being
analyzed, it is possible to delete too much or too little. My
attempt in this paper has been to develop a conceptual system
in which unnecessary redundancy was hopefully eliminated.
However, whether coherency between the conceptual system
and the system being analyzed was achieved for certain is not
known. The issue of congruence in the measurement of system
complexity and in information theory in general is an area
requiring considerable further research.
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Effect of Intraclass Correlation on Confidence Coefficients
of Confidence Sets Based on Chi-Square Statistics
REKHA BASU, J. P. BASU, AND T. 0. LEWIS

Abstract-This paper investigates how the presence of simple equi-
correlation in a multivariate normal sample affects the confidence co-
efficients of confidence sets based on chi-square statistics and con-
structed on the assumption of independence of the sample for the mean
when the dispersion matrix is known and the scalar C2 in a21 when Z
is known.

I. INTRODUCTION
In remote sensing data analysis, as in other areas of statistical

data analysis, confidence interval procedures or significance
testing procedures are usually derived on the assumption that the
observations in the sample are independently and identically
distributed normal vectors. In fact, even when the observations
are identically distributed normal vectors, they are at most
equicorrelated, but rarely independent. Dr. William Coberly [1]
analyzed some remote sensing data from Earth Resources
Technology Satellite (ERTS-1, renamed Landsat) to determine
the validity of the assumption of independence of observation
vectors in a sample. He discovered that the observations were
significantly correlated. Thus, in many instances, it would be
more rational to assume the sample to be equicorrelated or
simply equicorrelated, that is, all pairs of observations have the
same covariance, rather than to assume the sample to be
independent.
Walsh [2] has shown how the presence of intraclass correlation

in univariate normal samples affects the confidence coefficients
of some confidence intervals (or equivalently the significance
level of some tests of significance). Basu, Odell, and Lewis [31
have shown how the presence of simple equicorrelation in multi-
variate normal samples affects the confidence coefficients of the
confidence sets based on a T2-statistic for the mean of a single
population and the difference of means of two populations. In
this correspondence, it is shown how the presence of intraclass
correlation (simple equicorrelation) in multivariate normal
samples affects the confidence coefficients of the confidence
sets based on a chi-square statistic for the mean of a population
with known dispersion matrix and the scalar c2 in a2X of the
dispersion matrix when Y is known.
The above procedures are often used for deciding whether a

sample has come from a prescribed population. In remote
sensing data analysis, photointerpreters label areas as belonging
to different crops. The samples of observations coming from
those areas are used in training the classifier for automatic
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classification of the data into different crop classes. Following
the above procedures, new samples are either combined with the
existing training samples or kept separately as training samples
for unencountered classes.

II. BASIC CONCEPTS

The p x 1 random vectors X1,X2,... ,X, are said to be
equicorrelated [3] if

1) D(Xi) = E [(Xi - EXi)(Xi - EXi)T] = , a symmetric
positive definite matrix, for all i (1 . i < n);

2) cov (Xi,Xj) = E [(Xi - EXi)(Xj - EXj)T] = C, a sym-
metric semidefinite matrix, for all i j.

If X1, *.*,X, are equicorrelated random vectors, the dispersion
matrix V of their joint distribution is given by

v- c Y
* C =In (( C) + En 3 C, (1)

c c ...Y
where A 0 B denotes the Kronecker product [4] of the matrices
A and B, In is the n x n identity matrix, and En is the n x n
matrix, all of whose elements are 1.
The random vectors Xl,... ,Xn are said to be simply equi-

correlated if they are equicorrelated and

C = cov (Xi,Xi) = pi, (2)
where p is a scalar. When XI, -,Xn are simply equicorrelated,
the dispersion matrix V of their joint distribution is given by

=[(1 - P)IN + PEN 3S (3)

A sample Xl, . ,Xn from a multivariate population is said
to have intraclass correlation if X1,... ,Xn are equicorrelated or
simply equicorrelated. The common covariance matrix C of all
pairs of Xi and XJ (i # j) is referred to as the intraclass cor-
relation matrix. The scalar p is referred to as the coefficient of
simple equicorrelation.

III. SAMPLING DISTRIBUTION

Independent Sample
Let XI,- .,Xn be an independent sample from an Np(,u,)

population. They are identically distributed as Np(p,Y), and the
dispersion matrix V of their joint distribution is given by V =
In 02 S.

Let the np x 1 random vectors X and Z be defined as follows:

(4)

HZ given)

where B is the n x n orthogonal Helmert matrix given by

Since BBT = In and

D(Z) = (B 0 Ip)(D(X)(BT 0 ID)

= (B 0 Ip)(In 0 1)(BT 0 IP)
= (BhnBT) 0 (Ip4XP) = In 0 X,

it is easy to see that Zl, ,Zn are independently distributed
as follows:

(6)

(7)Zn - Np(Vn p, Y-)
and

t (XI + .__ + Xi-,) _ (i- 1) (8)
j=l Vi(i + 1) Ali(i + 1)

Zi -Np(O,I), i 1 ,z- 1,
where the symbol means "is distributed as."

Let us define

Qa1 = n(nd- 'I)
and

(9)

(10)

n
Q2= (Xi - X)T (Xi-i

-tr 1- [ (Xi V)(Xi X)T]* (1
i=l

Then it may be noted that Q1 is the Mahalanobis distance
between Vn X and VIn ,u. It is well known [4, p. 54] that if
Y Np(O,Y) and I is nonsingular, then

and hence,
Q xX2(P)

(12)

(13)

where x2(p) denotes a chi-square distribution with p degrees
of freedom. Since B is orthogonal, then

Q2 = tr (iE (X- X)(XX X)T

- trXr' {E, XiX1T - nXXT}
i=l

- tr -' ( XiZXZi )

n-i
= tr yi z

From (9) and the fact that Zl.. ,Zn-l are independent, it
follows that

Q2 Z2[(n - J)p]. (14)

0 0 .. 0

-2 0... 0
i2.3
1 ... 1

In(n - 1) In(n - 1)
I ... 1

B=

1
V12
1

12-.3
I

In(n - 1)

1

-1

1

V12.3

1

Vn(n - 1)

I

0

0

-(n- 1)
In(n - 1)

1

(5)

A.A.6

yTE-ly,.,,,, Z2(p)
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Simply Equicorrelated Sample

Let Xl,-.,X,, be a simply equicorrelated sample from an
Np(,u,X) population, the dispersion matrix V of their joint
distribution function being given by

V = [(1 - p)I,, + pEj] 0 1, -l/(n - 1) < p < 1.

Then defining X and Z as in (4) and noting that BEnBT is a
matrix whose (n,n)th element is n and all other elements are 0,
it can be shown that

D(Z) = E[(Z - EZ)(Z - EZ)T]

= (B 0 Ip)E [(X - EX)(X - EX)T](BT Ip)
= (B 0 Ip){[(1 - p)In + pEn] 0 y}(BT 0 I)

= B[(1 - p)In + pE.]BT 0 (IpLIp)

= [(1 - p)BInBT + pBEnBT] ® z

= [(1 - p)In + pBE.BT] ® z

[(1 - W) - I

L 1 + (n- 1)p] 0

TABLE I
VALUES OF a

p

n p 0 0.1 0.2 0.3 0.4

6 5 0.99 0.925 0.82 0.70 0.59
0.95 0.81 0.65 0.51 0.43

21 5 0.99 0.59 0.30
0.95 0.41

31 5 0.99 0.43
0.95 0.27

When H1 is true, then from (18) it follows that a confidence set
11(e) with coefficient e can be similarly given by

I1(e) = {m: Q1(m,p) < X82(p)} (22)
where

Ql(m,p) = n(X - m)T[z1/{1 + (n - 1)p}](X- m)

= Ql(m,0)/{1 + (n - 1)p}.(15)

Thus the dispersion matrix of Z is a block diagonal matrix with
off-diagonal blocks consisting ofp x p null matrices. Therefore,
the random vector Z being normally distributed, its component
random vectors Zl,..,Z,,-1, Zn are independently distributed.
From (6), (8), and (15), it follows that

(23)

Evidently, I1(e) can be rewritten as

I1(e) = {m: QI(m,O) < [1 + (n - 1)p]XE2(p)}. (24)

Now

P(jeI1(e) H1) = e. (25)

Zn N( /np,[1 + (n - I)p]1)
and

(17)

It may be of interest to note that if p = - 1/(n - 1), then Z,,
reduces to a degenerate random vector for which the probability
mass is concentrated at the single point Zn = Vn p. The quadratic
form Q1 = 0 with probability one.
When -1/(n - 1) < p < 1, it follows from (12), (16), and

(17) that
Q1/{1 + (n - 1)p} x2(p) (18)

and

Q21(1- P) X2[(n - 1)p]. (19)

IV. CONFIDENCE SETS

Confidence sets are constructed on the basis of a sample
xi, ,X,, from a multivariate normal population. Ho and H1,
respectively, will denote the following two hypotheses:

Ho the observations are independent (p = 0),
H1 the observations are simply equicorrelated and p (p X 0

and -1/(n - 1) < p < 1) known.

Confidence Set for Mean, Dispersion Matrix Known
Let the population density be Np(u,Y), the dispersion matrix X

(nonsingular) being known. Then, when Ho is true, that is, when
the observations are independent, it is known [4, p. 55] that a
confidence set with confidence coefficient e for p can be given by

(16) If H1 is true and yet inadvertently IO(e) is used as a confidence
set for u, then the confidence coefficient changes to some a,
where

P(ud0o(e) H1) = a,
but

where

(26)

oa = P(luei (a) H1),

Il(a) = {m: Ql(m,O) < [1 + (n - 1)p]XO2(p)}. (27)

It is evident from (26) and (27) that a satisfies the functional
equation

x 2(p) = X82(p)/{1 + (n j)p}. (28)

Evidently, if - 1/(n - 1) < p < 0, then a > E. However, if
p > 0, then a < c. The effect of positive values of p on the true
confidence coefficient a of the confidence set IO(e) is given in
Table I for e = 0.99 and 0.95. If a < 0.2, the entry in the table
has been left blank.

Confidence Interval for Dispersion Scalar
Let the population density be Np(y,acx2X), X being the known

nonsingular matrix. When Ho is true, it follows from (14) that
a confidence interval for a2 with confidence coefficient c can be
given by

0 a'o<- Q2IXN[(n - 1)p]. (29)
When H1 is true, then using (19), a confidence interval for c2
with confidence coefficient e can be given by

1O(e) = {m: Q1(m,O) < X82(p)}
where

Ql(m,O) = n(X- m)TX'(X - m)
and x£2(p) is the 100e percent point of x2(p). Thus

P(jelo(e) Ho) = e.

(20)

(21)

0 . ca2 < Q2/{(l - P)%E [(n - 1)p]}. (30)
If H1 is true and yet the confidence interval given by (29) is
used, the confidence coefficient changes to a, where a can be
shown to satisfy the functional equation

(1 - p)z.2[(n - l)p] = x82[(n - l)p]. (31)
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TABLE II
VALUES OF a

p

(n-I 0 0.1 0.2 0.3 0.4 0.5

4 0.99 0.988 0.986 0.983 0.979 0.971
0.95 0.941 0.930 0.918 0.900 0.872

16 0.99 0.982 0.966 0.941 0.890 0.790
0.95 0.919 0.870 0.790 0.670 0.490

32 0.99 0.975 0.946 0.867 0.715 0.440
0.95 0.900 0.810 0.640 0.380 0.170

Evidently, if p < 0, a > e, but if p > 0, a < e. The effect of
positive values of p upon the confidence coefficient xc is given in
Table II for c = 0.99 and 0.95.

V. CONCLUSION

This correspondence has demonstrated that the presence of
intraclass correlation affects the confidence coefficients of the
confidence sets obtained under the assumption of independence
for the mean of a normal population with known dispersion
matrix and the dispersion scalar a2 in a2E with E known. Also,
the following was demonstrated.

a) If the sample is simply equicorrelated with positive coef-
ficient of simple equicorrelation, then the confidence coefficient
decreases with sample size.

b) If the sample is simply equicorrelated with negative
coefficient of simple equicorrelation (- 1/(n - 1) < p < 0),
then the confidence coefficient increases with sample size.

Therefore, to be sure about the accuracy of the inference
regarding the confidence coefficient, it is necessary to test the
sample for independence or for the type of correlation-positive
or negative. In case the sample is found to be positively correlated,
it is advocated that test statistics appropriate for simply equi-
correlated data be used. When the coefficient of positive simple
equicorrelation is known or has been estimated, the test statistics
appropriate for simply equicorrelated samples can be easily
derived from the corresponding statistics for the independent
samples.
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An Experiment with the Edited Nearest-Neighbor Rule

IVAN TOMEK

Abstract-A number of computer simulation experiments with the
nearest-neighbor classification rule are described. They include classi-
fication by the usual k-NN rule, classification with k-NN on a design
set edited once according to Wilson and classification with k-NN on a
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design set edited unlimited number of times by two methods described
in the text. Results of experiments indicate that editing improves per-
formance of the rule. This is not proved rigorously, but a possible ap-
proach to a proof is outlined.

INTRODUCTION

Let D be a set of samples from a d-dimensional Euclidian
space whose members are selected as follows. Select m = 1
with probability p, and m - 2 with probability P2 = 1 - PI
Given m, select x e D from a population with density qm(x). In
other words, D consists of samples from two classes whose
underlying density functions are qm(x) and a priori probabilities
p,, (m = 1,2). D will be called the design set and its members
labeled prototypes.
The k-nearest-neighbor (k-NN) rule is a method of classifica-

tion which works as follows. Given a sample y to be assigned to
one of the two classes, find the k nearest neighbors (kNN) of y
in D using a chosen definition of distance. Assign y to class m
(either 1 or 2) if the majority of its kNN belong to class m;
break ties arbitrarily. (In practice, k is usually odd to avoid ties.
This will also be assumed for simplicity in the following text
unless specified otherwise.)
Much research has been devoted to the k-NN rule (for a list

of references see, for example, Duda and Hart [1]). One of the
most important results is that k-NN has asymptotically very good
performance. Loosely speaking, for a very large design set, the
expected probability of incorrect classification (error) P achiev-
able with k-NN is bounded as follows:

P* < P < 2P*. (1)
Here P* is the optimal (minimal) error rate for the given under-
lying distributions pi, qi(x) (i = 1,2) (see [2]). In many situations
the rule performs almost as well as the optimal classifier [3].
Furthermore, it has been shown by Wilson [3 ] that the following
simple editing of D improves the performance of k-NN even
further:

1) classify each sample x(i) C D by k-NN using samples
x E D, x x(i);

2) form a new design set D' containing exactly those samples
from D which have been classified in accordance with their
actual membership in Step 1).

k-NN classification with D replaced by D' reduces the expected
error rate below that associated with D.

It is natural to ask what would similar editing of D' (leading
to D"), D" etc. do to the design set. Should we expect progres-
sively better and better classification, or will editing distort the
design set and result in deteriorating performance?
A satisfactory answer to this question has not been found yet.

The reason is, basically, the following difficulty. Wilson has been
able to show that if a design set is "very large" and consists of
independently chosen samples, then, under quite general con-

ditions, the asymptotic probability that a sample x classified by
its k nearest neighbors in D' is assigned to class C(l) is

Pc (C(l)/X) = (2)Plp+P(C(()/x)(/
PJP.o(C(I)IX) + P2PX(C(2)lx)

Here Poo(C(i)/x) is the asymptotic probability that sample x is
assigned to class C(i) by the k-NN rule with an "infinitely"
large design set D.

Unfortunately Wilson's proof depends on the assumption that
samples in D are chosen independently. Editing generates a

design set in which samples are not independent since retention
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