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between the fine and coarse regions, this ratio improves only
slightly, to about 1.7.

Incidentally, the best-size computation seems to be a good
preprocessing operation for coarseness edge detection. Horizon-
tal edge values for Fig. 4, using size 64 by 64, are shown in Fig. 5.
(these values are multiplied by 8 for greater visibility). The
coarseness discontinuity is sharply detected.

Next, spot values were computed for Fig. 1 using sizes 5, 9,
17, and 33, where the spot value S}, of size 2* at a given point is
defined as follows. Let A4, be the sum of the gray levels in a
2% + 1 by 2¢ + 1 square centered at the given point. Then

A

c _ A+ 1
2k + 1)?

S =
k (2k+1 + 1)2

where ¢ is a constant scale factor (¢ = 3.1 in the examples).
These spot values for Fig. 1 are shown in Fig. 6. The best sizes
are shown in Fig. 7. For upper and lower partions of Fig. 1,
each 44 rows by 152 columns, the numbers of points having
each best size are

Size 5 9 17 33
Upper 3099 2380 977 232
Lower 1843 2030 1749 1066

yielding average best sizes of 8.1 and 12.8, respectively, for a
ratio of about 1.6, still about the same as obtained earlier. The
64 by 64 horizontal edges in Fig. 7 are shown in Fig. 8; the
results are not as good as in Fig. 5.

Finally, spot values were computed using sizes 5, 9, 13, 17,
21, 25, 29, and 33; this yielded the following numbers of points
having each best size.

Size 5 9 13 17 21 2529 33
Upper 2805 2039 845 470 250 110 93 76
Lower 1652 1537 1067 792 523 538 304 275

The average best sizes are 8.65 and 12.7, slightly worse than
before, but still about 1.5 in ratio.

For comparison purposes, Fig. 9 (taken from [5]) shows
the results of applying the coarseness edge detection method of
[3]-[5] to Fig. 1. A local property was first computed at every
point; this was a threshold “gradient” defined by

g(x’y) = ls xi,j+l| >t

=0’

if x5 = Xieq a1l T Xign —
otherwise

where the x are gray levels. Horizontal 64 by 64 edges were
then found in the resulting picture. As Fig. 9 shows, similar
results, not as good as those in Figs. 5 or 8, are obtained in this
way for several values of .

It should be mentioned that the edge detection schemes
described in [3] and [4] were implemented in PAX [8], and
were very costly in computer time; a typical run on a 108 by 108
point picture required several minutes of Univac 1108 time.
The implementation described in [5] is faster by about two orders
of magnitude. For more information about the improved im-
plementation see [9].

IV. CoNCLUSION

The results obtained are disappointing and leave many
questions unanswered. Since the actual scale ratio is 2.3:1,
why do all the methods tried here consistently yield ratios of
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about 1.6: 1? Is it possible that there is an inherent bias in using
discrete detector sizes rather than a more continuous range of
sizes? Would the results be different if digitally rescaled images
were used rather than images that were photographed at dif-
ferent scales and then independently digitized?' The authors
hope that publication of the present correspondence will lead to
further investigation of the coarseness measurement problem,
and hopefully, to the development of more satisfactory measures.

ACKNOWLEDGMENT

The authors wish to thank Lillian LaPlaca, Eleanor B.
Waters, and Andrew Pilipchuk.

REFERENCES

[1] R. M. Haralick, K. Shanmugam, and I. Dinstein, ‘‘Textural features for
image classification,” IEEE Trans. Syst., Man, Cybern., vol. SMC-3,
pp. 610-621, Nov. 1973.

A. Rosenfeld and E. B. Troy, ‘“Visual texture analysis,” Computer
Science Center, Univ. Maryland, College Park, Tech. Rep. 116, June
1970. (Abridged versions appear in J. M. Garnett, ed., Conference
Record of the Symposium on Feature Extraction and Selection in Pattern
Recognition, IEEE Publ. 70C-51-C, October 1970, pp. 115-124; and in
Proc. UMR—Mervin J. Kelly Communications Conf., paper no. 10-1,
Oct. 1970.)

A. Rosenfeld and M. Thurston, “Edge and curve detection for visual
?geﬁe analysis,” IEEE Trans. Comput., vol. C-20, pp. 562-569, May

[2

—

3

A. Rosenfeld, M. Thurston, and Y. H. Lee, “Edge and curve detection:
Further experiments,” IEEE Trans. Comput., vol. C-21, pp. 677-715,
July 1972.

[5] K.C. Hayes,Jr.,and A. Rosenfeld, “Efficient edge detectors and applica-
tions,” Computer Science Center, Univ. Maryland, College Park, Tech.
Rep. 207, Nov. 1972.

[6] P. Brodatz, Textures. New York: Dover, 1966.

[7] 1. D. G. Macleod and A. Rosenfeld, “The visibility of gratings: A space-
domain model,” Computer Science Center, Univ. Maryland, College
Park, Tech. Rep. 205, Nov. 1972.

[8] E. G. Johnston, “The PAX II picture processing system,” in Picture
Processing and Psychopictorics, B. S. Lipkin and A. Rosenfeld, Eds.
New York: Academic, 1970, pp. 427-512.

[9] K. C. Hayes, Jr., “XAP: An 1108 file-oriented picture management

system,” Computer Science Center, Univ. Maryland, College Park,

Tech. Rep. 213, Dec. 1972.

[4

=

»

! These questions were raised by one of the referees, whose detailed
comments on these and other points led to several major changes in this
correspondence.

Fuzzy Chains
ABRAHAM KANDEL anp LAWRENCE YELOWITZ

Abstract—Motivated by the ineffectiveness of classical mathematical
techniques in dealing with imprecision in some real life systems, an
investigation is made of fuzzy chains from x, to x,, which are simply
sequences of elements of the fuzzy set X. A suitable notation is used to
represent a primitive connection matrix, and a procedure is given to
convert this matrix to the fuzzy transmission matrix for the system. This
procedure is a generalization to fuzzy algebra of a procedure to compute
the transitive closure of a binary matrix, and it is very efficient, involving
only a single scan over the matrix. A proof of correctness of the procedure
is given. It should be noted that the imprecision involved stems not from
randomness but from a lack of sharp transition from membership in a
class to nonmembership in it. Various properties of the matrices involved
in such representations are investigated and illustrated.
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Fig. 1. Graph Gy corresponding to fuzzy system.

I. INTRODUCTION

Ever since Zadeh [1] introduced the idea of fuzzy set theory by
utilizing the concept of membership grade, a number of re-
searchers have been concerned with the properties and applica-
tions of fuzzy sets, [2]-[26].

Essentially, fuzziness is a representation of imprecision that
stems from a grouping of elements into classes that do not have
sharply defined boundaries. Since certain aspects of reality
always escape most mathematical models, the strictly binary
approach to the treatment of physical phenomena is not always
adequate to describe systems in the real world. Real world
constraints, such as complexity, ill defined situations, and transi-
tion states are reflected upon the various attributes of our models.

Because of these constraints the attributes of the system
variables often emerge from an elusive fuzziness, a readjustment
to context, or an effect of human imprecision, as usually appears
in modeling of “soft™ sciences, such as sociology, psychology,
natural languages, and pattern description.

Since systems that are either ill-defined or describe transitional
behavior do not have a precise quantitative analysis, some
graphical approach to represent these systems is needed. It is
in this sense that fuzzy logic analysis, through the use of fuzzy
chains, might enable us to process decision relevant information
by using approximate relations to a primary set of precise data.
This approach might be of use in areas such as decision processes
linguistics, sequential systems analysis, system modeling approx-
imation, and many more. Some problem oriented examples,
which we made no attempt in the present correspondence to
investigate are 1) graph representation of combinational and
sequential systems during transition, namely, investigation of
hazards by means of fuzzy chains; 2) classification of patterns
and cluster analysis through the description of fuzzy matrices
and graphs; 3) approximation of ill-defined transport networks
and maximal matching systems by means of fuzzy representations
of chains.

II. Fuzzy CHAINS

Fuzzy algebra completely specifies the performance of a fuzzy
system with n-input terminals x,---,x, and a single output
terminal, where the fuzzy function f is represented by

f(xli. ' ‘,X,,) = é

Consider, for example, the two-terminal fuzzy system of Fig. 1.
The grade membership of the edges of this system are considered
as fuzzy functions. It is quite clear that the set of fuzzy n-variable
functions is closed under the operations of union, intersection,
and complement and that this set forms a distributive lattice.
Thus the fuzzy system may be considered an undirected finite
graph, the edges of which are designated by the generators of the
distributive lattice.

Definition 1: If ®@ is a two-terminal fuzzy system constructed
from edge-type elements x;,x,,- - -,x,, then the fuzzy transmission
Sunction (FTF) of @, F,, is defined as the union of the closed
chains between the terminals of the network. For the system of
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Fig. 2. Primitive connection matrix of Fig. 1.

Fig. 1, the FTF of @ is given by
Fy = xz + xXw + yw + Xyz

when concatenation represents min and + represents max
operations. Formally, the FTF of a two-terminal fuzzy chain
network is obtained as follows.

1) Determine all irredundant input—output chains.

2) For each chain in 1) form the intersection of the corres-
ponding edge grade-memberships in order to obtain the
grade-membership of the chain.

3) Form the union of all chain grade-memberships obtained
in 2).

Definition 2: The dual of a fuzzy function F, written FP,
is inductively defined as follows.

1) If F = fj, then F? = f}, forj = 1,2,---,n.
2) If A, B, and C are fuzzy functions and 4 = B + C, then

AP = BPCP,
3) If 4, B, and C are fuzzy functions and 4 = BC, then
4° = B® + CP.

4) If A and B are fuzzy functions and 4 = B, then AP = (F).

The relation between a fuzzy function F and its dual FP is
given by the following theorem.

Theorem 1 [23]: If F is a fuzzy function constructed from
x;, for i = 1,--,n, and FP is its dual written as FP(x,,- - -,x,),
then FP(x,, - -,x) = F(%y, - -,%,).

Corollary 1: If F; and F, are fuzzy functions, and F; = F,,
then F,? = F,°.

We say that a fuzzy function F, is self-dual if and only if
F4 = F,P. Thus a self-dual expression for the FTF of ® can be
obtained as follows.

1) Determine all minimal cut-sets separating the two terminals.

2) For each cut-set in 1), form the union of the corresponding
edge grade-memberships to obtain the grade membership
of the cut-set.

3) Form the intersection of all cut-set grade-membership
obtained in 2).

The self-dual expression for Fig. 1 is, therefore, Fy = (x + y)-
(x+y+ 2)(x + %+ w)z+ w). This expression can be
derived from the previous one by the absorption law and the
distributive law.

We can also derive the FTF of @ by a suitable fuzzy matrix
theory. Fig. 2 shows the primitive connection matrix p cor-
responding to Fig. 1. To completely analyze the fuzzy system,
one would desire a k x k matrix of which the ij entry is the fuzzy
transmission function of the system with terminals / and ;.
This suggests the definition of a fuzzy transmission matrix and
the examination of some properties of fuzzy matrices.

In [5] and [26], relation matrices have been discussed and
several examples of the relation matrices of some similarity
relations have been demonstrated. It is clear that the graph
representation of a fuzzy system bears a similarity to the relation
matrix discussed by Zadeh and applied by him to the investigation
of fuzzy algorithms. It is claimed that the conceptual framework
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developed in [26] best describes the systems that are too complex
or too ill-defined to admit of precise quantitative analysis. It
should be noted, however, that there exists a very important
source of imprecision in systems, and this is transition behavior.
Transition of a system or of a specific element in a system can be
best described and analyzed by means of a fuzzy description.
This is true for hazard detection in combinational systems [24]
or for transition models in such fields as economics, management
sciences, artificial intellegence, physics, and linguistics. The
fuzzy transition is best represented by a fuzzy chain or a fuzzy
path on the graph representing the system.

Let x,,%,,- - -,x; be k points in the fuzzy set X with u(x;,x;)
being the grade-membership describing the transition from
x;to x;, 1 <4, j < k. Asequence S = (x,,--,x,) will be said
to be a fuzzy chain from x, to x,, where | < r, t < k, and it is
said to have the strength of its weakest link.

For any primitive connection matrix p we define the character-
istic fuzzy matrix or fuzzy transmission matrix Y(p) = [x;;]
such that x;; is the fuzzy transmission function of the two-
terminal system connecting vertex i to j. It is clear that ¥(p)
is a symmetric matrix, since the graph is an undirected one, and
thus x;; = xj;, for all /,j and x;; = 1, for all 7.

Theorem 2: Let p be a square fuzzy transmission matrix of
order n. Then there exists an integer ¢ < n — 1 such that

pl=pttl = = yYlp)

Proof: Let p = [p;;]. The ij entry of p? is
n
Z PirPrj
k=1
and this term has the grade-membership of

m:ix [min (Pik’pkj)]

iff there is a direct path between vertices / and j, or there is a
path from i to j through one intermediate vertex. Extending this
argument to p' it is clear that no path requires more than n — 2
intermediate vertices, since there are only # vertices, and internal
loops are excluded. Hence, the ij entry of p"~ ! has the grade-
membership of

max {ij terms of p"~ !}
subterms

iff / and j are connected, namely, "L = Y(p). Q.E.D.

Based on these results ¥(p) can be computed by successive
multiplication of p.

The repeated matrix multiplication makes it unattractive from
an efficiency viewpoint. Algorithm 1 achieves the same result
and requires only a single scan over the matrix. In fact, Algorithm
1 works correctly on a wider range of input, since it is not re-
quired that the diagonal elements of the input matrix equal one.
Algorithm 1 is an extension to fuzzy logic of an algorithm of
Warshall [28] to compute the transitive closure of a binary
matrix.

Algorithm 1:

1) Label all vertices by the integers 1,- - -,N.

2) Construct the primitive connection matrix p the ij entry
of which denotes the fuzzy transmission function of the
two-terminal fuzzy system connecting vertices i and j
through a direct chain.

) poK=11TON

4 pol=1T1T0N

5) 1F p(I,K) # 0 THEN
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6)poJ =1T1T0N

7 p(1J) = max (p(L,J), min (p(1,K), p(K,J)))
8) END

9) END

10) END

The basic idea is to scan down column K, and for each non-
zero element encountered (e.g., in row I), each element in row I
(e.g., element p(I,J)) is possibly improved by comparing p(1,J)
to min (p(I,K), p(K,J)). A rigorous proof of correctness is
achieved by attaching the following inductive assertion A [27]
between statements 7) and 8):

p(LJ) = M(LJ,K)

where M(I,J,K) A max {min (all chains from I to J such that
each intermediate element has a label <K)}.

Before proving that assertion A is true whenever control
leaves step 7), it is noted that the relation p(I,J) = M(I,J,N) is
the desired relation at the termination of the algorithm, since
M(I,J,N) = max {min (all chains from [ to J)}. Assertion A is
proved by induction on K.

1) K = 1. The first time A is reached, K has the value one,
and path analysis [27] shows that p(I,J) = max (p(1,J),
min (po(1,1), po(1,K))), where p, represents the original
matrix and the right side of the equation equals M(/,J,1).

2) Assume p(IJ) = M(IJ,K), 1 < K < N. Show p(I,J) =
MU, J, K+ 1)

There are two subcases to consider. If M (I, J, K + 1) does
not involve element K + 1, then no change is made to the
matrix and the desired result is true. If M(/, J, K + 1) does
involve element K + 1, then we can guarantee that element
K + 1 appears only once, since loops do not increase the max
of any chain.

Thus we can break the optimal chain into two subchains
p(I, K + 1) and p(K + 1,J). Since both subchains involve
intermediate elements numbered <K, the inductive hypothesis
applies to each subchain and the desired result follows.

It is interesting to note that during the process of computing
the characteristic fuzzy matrix, minimization of the fuzzy
structures are possible. In general, one can not apply the identities
x-% = 0and x + ¥ = 1 to fuzzy expressions, and thus binary
techniques of minimization are insufficient. Therefore, more
specific methods, directed toward the minimization of fuzzy
functions, should be used.

The first author has presented [25] a novel method for the
minimization of fuzzy functions by extending the concepts of
prime implicants and consensus to fuzzy logic. In [25] an
algorithm that generates all the fuzzy prime implicants is in-
troduced, and a proof of completeness of the algorithm is given.
The minimization technique takes into consideration the refine-
ment of the classical map approach and the properties of fuzzy
consensus in the context of fuzzy logic. It is recommended to
implement the technique described in [25] for the derivation of
the simplified characteristic fuzzy matrix ¢ (p).

The characteristic fuzzy matrix represents a mean by which
the analysis of any finite fuzzy system can be obtained. The
analysis technique that has been given is quite general, and the
use of matrix techniques leads to efficient computations, partic-
‘ularly in the description of fuzzy sequential procedures such as
decision-making and procedures involving sequences of im-
precise operations, which can be best represented by graphs
and fuzzy chains.
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I11. CoNCLUSION

The applicability of fuzzy algebra to the study of fuzzy chains
has been introduced. Program correctness techniques were used
to certify the main algorithm.

The main contribution of this note consists of two parts.
First, a new conceptual framework for the study of fuzzy systems
is provided, facilitating the derivation and stimulating the
discovery of various results in applied areas. Second, a proof of
correctness of the main algorithm is given. This technique for
certifying algorithms shows conclusively that no errors exist,
in contrast to the usual technique of testing, which can only
show that no errors have been found in a certain number of trial
runs [27].

Several problem-oriented examples have been mentioned in
the introduction, and it is our hope that the interested reader
will be able to find many more applications in his field of interest.
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An Algorithm for Spoken Sentence Recognition and
Its Application to the Speech Input—Qutput System

KATSUHIKO SHIRAI anpo HIROMICHI FUJISAWA

Abstract—An algorithm for spoken sentence recognition is described.
The problem of sentence recognition is mathematically formulated as an
optimization problem with the constraint of sentence structure. It is
solved by a dynamic programming technique. The algorithm presented
has advantages not only in that the solution is optimal in the Bayesian
sense, but also that the effective number of words that affects the recog-
nition score is reduced, the end of a sentence is automatically detected,
and a sentence that is logically invalid can be rejected. The algorithm
was applied to a practical situation as a speech command recognition and
vocal response system. It recognizes speech command sentences and
responds in voice to the operator. The vocabulary of conversation between
the operator and the machine is limited, but flexibility in the conversa-
tional style is allowed. The system that was built utilizes a minicomputer
with an eight kiloword memory capacity, a hardware feature extractor
for speech recognition, and a hardware speech synthesizer for vocal
responses. If a larger computer is available, the system can be enlarged
with only minor modifications.

I. INTRODUCTION

Many speech pattern recognition systems have been designed
to classify spoken words [1]-[4], but few have been designed
so as to treat spoken sentences. Strictly speaking, it is difficult
to define what is recognition of a sentence or what is under-
standing of meaning. However, unless the system responds to a
sentence or changes its internal state according to the meaning
of the input sentence, it cannot be said that it recognizes the
meaning. That is to say, a sentence recognition system is required
to be more than a simple classification machine.

In this correspondence a method is presented for the design of
a system that recognizes spoken sentences, makes vocal responses,
and changes the related state. This method was applied to a con-
versational system, the Speech Input-Output System (SPIO) of
the robot called WABOT-1 (Waseda Robot) [5]. It accepts
Japanese spoken command sentences, which are strings of
separately spoken words, responds to the meaning of the com-
mand in speech, and makes the robot move as commanded.

One of the most important factors in the design of such a
system is that the machine and the operator have a common
recognition of the situation or the scene that is talked about
between them. Therefore, the concept of situation is introduced
in terms of “states™ as in automata. The state makes a transition
after the recognition of an input sentence and simultaneously
makes an output. Probable sentences that may appear under a
state are limited, and thus the effective number of words (sen-
tences) that affects the recognition score is reduced. Further
words in a sentence should be ordered in a restricted way, which
is not necessarily grammatical. This is conveniently taken into
account by the concept of sentence structure.

In a practical application, the purpose and the ability of the
machine is always limited, and the contents of conversation
can be finite. It follows that the problem of sentence recognition
can be considered on the extension of a classification problem.

Another difficult problem lies in the recognition of the naturally
spoken sentences [6]. This stems from the fact that they are
continuous and the segmentation becomes necessary. In the
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