
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, NOVEMBER 1973

0o7

0.1

5 t0 J5 20

tysec)-

Fig. 2. Comparison of filtering error variance with constan
continuous-

The variances Q and R have been selected equal to 0.2 and
0.8, respectively, and the initial state has been selected as

x(0) - [0 0 l ]T.

The lower order model has been taken to be of the form

x(t) -- Co + ccxp + w(t), where x is scalar

y(t) = x(t) + v(t).

The various estimate and variance equations were processed
on the computer using a 0.01-s sampling period and the initial
values N(O) 0.9, eo(O) 0, ep(O) = 0, and

-0.4 0 0
P(O) 0 0.1 0

O 0 0.1

To illustrate the type of results obtained, the plots of variance
P5(t) of the error of state estimation for three different cases are

shown in Fig. 2. These correspond to the case of constant bias
correction, the case of nonlinear correction with p = 2, and the
case of nonlinear correction with p = 3. As in the discrete-time
case, it is evident that the addition of the nonlinear correction
term leads to an improvement in state estimation. Furthermore,
since the actual nonlinearity is cubic, the choice of p = 3 leads
to a better modeling.

V. CONCLUSIONS

The problem of constructing lower order models for state
estimation of nonlinear dynamical systems has been studied. It

has been shown that though the use of a constant bias correction
term to some extent compensates for the errors of modeling,
better compensation can be achieved by adding a nonlinear

correction term. It has been shown that the increase in the

computational requirements due to the added nonlinear term is

relatively small because the components of the variance equation
of the augmented system are still decoupled.

bias (a), cubic correction (b), and quadratic correction (c) for
-time example.
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Uniform Asymptotic Stability of Discrete Large-Scale
Systems

LJUBOMIR T. GRUJIC

Abstract-The purpose of this work is to develop algebraic conditions
under which uniform asymptotic stability as well as uniform asymptotic
connective stability of discrete large-scale systems are implied by
uniform asymptotic stability of their subsystems. The stability properties
of a discrete large-scale system are guaranteed by negative definiteness
of a real symmetric matrix, the dimension of which is equal to the
number of the subsystems.

I. INTRODUCTION

Despite both the importance of the discrete system theory for
the general system theory [I ] and the widespread use of digital
computers in the control of large-scale systems (such as electric
power networks, transportation systems, and space vehicles)
most of the papers on stability of large-scale systems as surveyed
in [2] are devoted to continuous systems. Papers that treat

Lyapunov-type stability of discrete large-scale systems are re-
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stricted either to systems with exponentially stable subsystems
[3 ] or to a limited class of discrete systems with some such strong
stability properties of the subsystems [4]. Removing the ex-
ponential stability requirement placed on the subsystems, the
class of discrete large-scale systems can be significantly broadened
[5]. Finite time stability as one of the most important non-
Lyapunov types of stability of discrete composite systems is
studied in [6].
A new concept of connective stability [7] has been recently

introduced to treat continuous large-scale systems under struc-
tural perturbations [8]. It has been shown that algebraic condi-
tions can be derived to guarantee exponential stability of a
large-scale system despite on-off participation of the exponen-
tially stable subsystems. Conditions for uniform asymptotic
connective stability of large-scale systems characterized by their
structure of a special type were developed in [9], in which
sufficient conditions for uniform asymptotic stability of discrete
large-scale systems of a special class were also obtained.

This work is concerned with investigations of stability proper-
ties of nonstationary nonlinear discrete dynamic large-scale
systems composed of interconnected subsystems. Algebraic con-
ditions for both uniform asymptotic stability and uniform
asymptotic connective stability of large-scale systems are ob-
tained without requiring Lyapunov functions to be of special
form. It is shown that to achieve either uniform asymptotic
stability or uniform asymptotic connective stability of a discrete
large-scale system it suffices to assume uniform asymptotic
stability of the subsystems and demonstrate negative definiteness
of a real symmetric matrix provided that interactions fulfill weak
algebraic inequalities presented in a general form. If the inter-
actions do not satisfy the inequalities in the whole system state
space, the stability properties do not hold in the whole. In this
case a lower evaluation of the domain of uniform attraction as
well as of the domain of uniform connective attraction is de-
termined. Furthermore, if all subsystems are uniformly asymp-
totically stable in the whole and interactions satisfy the in-
equalities in the whole state space, the conditions guarantee
uniform asymptotic stability in the whole and/or uniform asymp-
totic connective stability in the whole of the discrete large-scale
system. It is to be noted that the conditions for the connective
stability type ensure uniform asymptotic stability of the large-
scale system under any structural perturbations.
The results obtained in this work also offer a computationally

efficient reduction in dimensionality of stability problems in
discrete large-scale systems.
The presented stability conditions are derived by using the

(second) Lyapunov method [10], the concept of vector Lyapunov
functions [11], [12], and the notion of comparison functions
[13]. To illustrate an application of the obtained general results
to discrete large-scale systems with nonstationary subsystems of
Lur'e type, the Aizerman conjecture is proved for a class of non-
stationary multinonlinear discrete systems. Two examples are
also presented to illustrate the results on both uniform asymp-
totic stability and uniform asymptotic connective stability in the
whole of discrete large-scale systems.

II. UNIFORM ASYMPTOTIC STABILITY OF COMPOSITE DISCRETE
SYSTEMS

Let a discrete large-scale system (S)

X(tk + I) = f [tk,X(tk) ] (S)

be composed of s interconnected subsystems Si, which are
described by

Xi(tk+1) = ig[tk,Xi(tk)] + hi[tk,X(tk) ], Vi - 1,2,.* .,s (Si)

where x c Mf is the state of system (S), x, E JR"i is the state of
subsystem (Si) and f: Y x R' -+ Mn is the system transition
function. Y is the infinite time interval (oc -, + oo) and 70 c Y
is the semi-infinite time interval [to,+ oo). The transition func-
tion of a free subsystem (Si)

Xi(tk +1 ) = gi[tk,Xi(tk)], Vi = 1,2,. .,S (Si)

is denoted by gi:$r x -+i ?A"i. Functions h,:Y x 1? -+

S"I, Vi = 1,2, --,s, represent interactions among subsystems.
It is assumed that f(t,x) = 0, Vt eYr, if and only if x = 0, as
well as gi(t,xi) = 0, Vt eY, if and only if xi = 0, Vi = 1,2,. .,s,
so that the origin x = 0 of the state space ?n is the unique
equilibrium point of system (S) and the origin xi = 0 of the
state space M?i is the unique equilibrium point of subsystem
(Si), Vi = 1,2,.- -,s. In the sequel discrete time tk will be

tk= to + kA, k = 0,1,2, .. , (1)
where A is a real positive number.

Referring to the converse theorems on the uniform asymptotic
stability of the equilibrium of subsystem (Si), which are proved
by Hahn [13, theorem 49.3] and Gordon [14, theorem 3], we
conclude that uniform asymptotic stability of the equilibrium
xi = 0 implies existence of set -9 c £ni and a positive-definite
decrescent locally Lipschitzian function Vi(tk,xi) whose forward
difference along system solutions is negative definite

Oil(lixiii) . Vi(tk,xi) . Oi202jx41), V(tk,xi) cY7 x -i (2)

AVi(tk,Xi) . - i3( lXi ID,
In (2) and (3) functions 4ij: 1i -+ S1, Oj e.*', j = 1,2,3, are
comparison functions of class X [13], and llxll = (xTx)112.
A purpose of this research is to demonstrate a possibility for

testing uniform asymptotic stability of the equilibrium of com-
posite system (S) by using only the minimal essential information
about all its subsystems and their interactions gi that are sup-
posed to satisfy the following inequalities for some real numbers
aijl satisfying oij, < 0, if and only if i = j = 1, Vi, j, I = 1,2,.* s,

AVi(tk,xi) = Vi[tk+1,gi(tk,xi) + hi(tk,x)] - ki(tk,xi)
s s

< E E axij 1ol 12( IIXj I)0112(11XI11),
j=l 1=1

V(tk,x) e S x -9, Vi = 1,2,. . ,s (4)

where -9 c X

Q = -91 X 92 X ... X -9s. (5)
Functions Ssi can be either some of functions qij, j = 1,2,3,

or of other functions such that Oi(jjxi 11) > 0, Vxi E -i, xi . 0;
ob(O)= 0. The required information is the knowledge of
Lyapunov functions Vi(tk,xi), comparison functions Oj, Vj =
1,2,3, Vi = 1,2,. .,s, and numbers aijc, Vi,j, l = 1,2, - ,s (4).
To formulate simply a sufficient condition for uniform asymp-
totic stability of the equilibrium of composite system (S) let a
real constant symmetric s x s matrix A be introduced

A = (ajj), aij = (lji + xlij), Vi, j = 1,2,- *,s. (6)
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Theorem ]: The equilibrium state x 0O of composite system
(S) is uniformly asymptotically stable if the matrix A with
elements aij determined by (6) is negative definite. If it is also
.7 _,9" (5), then the equilibrium is uniformly asytmptotically
stable in the whole.

Proof: Let us introduce a candidate Lyapunov function
V:,F x 4n -* 4'

v(tk,x) = 2 E i(tk,Xi)
i 1

which is a decrescent positive definite function (2)
s -s

2 E qi1(IlXill) < V(tk,X) < 2 E Oi2(11XiI1), V(tk,X) eY x 9
i=l i=l

and let w: n o fS be

w(X) =(O1 12(I!Xl 11) 02 1/2( IIX2 11) ... 0 l/2(11X 11))T
so that the forward difference Av(tk,x) along motions of composite
system (S) is found by using (4) to satisfy

AV(tk,X) <wT(x)Aw(x), V(tk,x) C X 9. (7)
Let 6-7 be the boundary of9 and .9e c 9 be

=fe x: 2 E 4il(lIxill) < 2 min E q!(lxIl) (8)
t i=l it-. (

If xo c -e, then (7) yields

Av(to,xo) < wT(xo)Aw(xo) < -0(lxo ) (9)

where q0: ~4' -* 4', q0 c t, is a comparison function of the
form

and Xm(A) is the greatest eigenvalue of the matrix A. Since A
is a negative definite matrix it follows that tM(A) < 0. Therefore,
Av(tk,x) (7) is also negative definite. From (9) we get

V [tI,(t I; to, X()) <V(tO,,r0)
which implies x(t I; to, xo) e- .7e Repeating this procedure and
using the method of mathematical induction on k = 0,1,2, ,
m, .., it is proved that

V(tk,tO,xO) C-EE0

as well as

||xo < a5() =:. !x(tk; t, x0) < C,

where

X , X -9e

Ve c (O,CM ] (10)

From (7) we get

V Itl ,xt1 ; to, xo)1V(to,xO) -- X( xo 11)
or, in general,

V[tk+I,X(tk+1 ; to. XO)]

=V{tk+I,X[tk+ I; tk, X(tk; to, Xo)]}

V[tk,x(tk; to, XO)] - q[ I1x(tk; to, Xo) ],

V(tk,to,Xo) C 0 x .x7e.

Therefore,
k

V[tk+l,x(tk+I ; to, Xo)] V(to,Xo) - E (IIx(ti; to, xo)lI)
i=O

< V(to,xo)- (k + l)q(Cm)
where CM = mmn {inftk,c 'x(tk; to x0)l ; ;} > 0 since > 0
and Itx(tk; to, xO)1 cannot be equal to zero for any finite k.
Hence, for an arbitrary real number 4 > 0, we derive

V[tk1,XQ(tk+l; tO, X0)] <

as soon as

k > q$1(mM)[V(to,xo) + 4] - 1

which is impossible since V(tk,x) > 0 by definition. Therefore,
C 0, i.e.,

||x(tk+1; tO, xO)l O as tk+ -* + Xs V(tO,x0)eG7 X -~'

This result proves that .e is a lower evaluation of the domain of
attraction. Hence, the first part of the theorem is true. If 7 =

on then -9e ,n, which proves the second part oi the theorem.
It is to be noted that the proof of Theorem I enables us to

evaluate the domain of attraction (.9a) of composite system (S).
Such an evaluation is given by set ge (8), .ge C .7a'

V(tO,x0) eYf X 9e Jx(tk; to, Xo)| -eO as tk o+ +cx.

IV. UNIFORM ASYMPTOTIC CONNECTIVE STABILITY

The classical stability theory is mainly concerned with initial
condition, forcing function and parameter perturbations of
dynamic systems which do not change their structural properties.
On the higher hierarchical level, however, it is of interest to
consider structural perturbations and use a notion of connective
stability introduced and defined by Siljak in [7], [8].

Structural perturbations of large-scale system (S) can be
described by using an interconnection s x s matrix E= (eij)
with elements eij that can take on values zero or one with the
meaning

6(c) = 2 min E qi1(lixi I)

and .YSE is the boundary of hypersphere

',5= {x: llxll < C}

provided that cM > 0 is selected so that Y zMC .e. If 6(E) is
chosen to be 5(c) = 8(CM), VE > EM, then relations (10) are
valid Ve > 0. From (10) it results that the equilibrium
x 0 is uniformly stable. To prove that the equilibrium is
uniformly attractive we suppose opposite, i.e., that there exists
a real number C > 0 such that

llx(tk; t0, xo)j! -- C as tk - + x for (tj,xo) eY X -e

eij = |1, Sj acts on Si through gi
\0, Sj does not act on Si. (11)

An interconnection matrix is called the fundamental interconnec-
tion matrix Ef if all elements eij that correspond to existing or
possible connections between subsystems are set one, and non-
existing interconnections are represented by invariant zero

elements.
In this work a condition for connective stability will be

derived so that all allowed structural perturbations, which may
be arbitrary functions of the state x(tk) c MJ9 and/or time tk E 0
are described by interconnection matrices E. For this reason and
by referring to papers [7], [8], the following definition is
accepted.

638

X(tk; tO, XO) E 5°es



CORRESPONDENCE

Definition: The equilibrium x = 0 of a free discrete dynamic
system (S) with subsystems (Sci)

Xi(tk+l) = gi[tk,Xi(tk)] + hi [tk,eilxl(tk),ei2x2(tk),. ,eisxs(tk).

Vi = 1,2,. .,s (Sci)

is uniformly asymptotically connectively stable (in the whole) if
and only if it is uniformly asymptotically stable (in the whole)
for all interconnection matrices E.

Since the equilibrium x = 0 of system (S) should be uniformly
asymptotically stable for all interconnection matrices the follow-
ing statement is obtained [7], [8].

Statement: A necessary condition for connective stability of
the equilibrium x = 0 of system (S) is that each subsystem (Si),
which can be completely disconnected, should possess the same
stability properties as required from the entire system.

Referring to the statement, it is accepted that each subsystem
(S) possesses uniformly asymptotically stable equilibrium xi = 0
as well as that a set -9i ' Si and a Lyapunov function Vi(tk,xi)
are used to prove the stability property. Comparison functions
,ij(llxi I), Vi = 1,2,'..,s, Vj = 1,2,3, (2), (3), are supposed to
be known. Further, interactions hi are required to satisfy the
following inequalities for some real numbers aij, 2 0 and
flh > 0:

s s

AVi(tk,xi) < fijlbijbil+ eijeiLcicj I)Slj12(lIxj I)q0 2( Ix,It),
j=1 1=1

Vi = 1,2,. ,s, V(tk,x)e9,VE (12)

where A Vi(tk,xi) is the forward difference of function Ji(tk,Xi)
along solutions of (Sci) and 6ij is the Kronecker symbol. Con-
ditions (12) imposed on system interactions are presented in a
general form. It is obvious that values of aij, and f/i3i depend
crucially on a choice of Lyapunov functions Vi, comparison
functions bij(lIxi, I) and functions Oi(jjxj f) as well as on properties
of interactions hi. These values are required to be determined so
that all elements aij of a real symmetric matrix A can be com-
puted by using

s

a,j(E) = [-2filjjj6i5j6j + elielj(alij + alji)

Vi, i = 1,2, . (13)

Matrix A may be viewed as a matrix with elements a,j dependent
on interconnection matrices E, (13). Since aij, 2 0, Vi,j, 1 =
1,2, ^,s, and eij > 0, it follows that all elements aij(E) of
matrix A(E) take on their maximal values for the fundamental
interconnection matrix Ef

max a,j(E) = aij Ef), Vi, j = 1,2, - * ,s.
E

(14)

Using this result the required condition for uniform asymptotic
connective stability of large-scale system (S) can be formulated
as follows.

Theorem 2: The equilibrium state x = 0 of large-scale system
(S) with subsystems (Sj) is uniformly asymptotically connec-
tively stable if the matrix A(Ef) with elements a,j(Ef) determined
by (13) for E = Ef is negative definite. If it is also -9 =- ,
(5) and (12), then the equilibrium is uniformly asymptotically
connectively stable in the whole.

Proof: Repeating the proof of Theorem 1 we show that the
equilibrium x = 0 of system (S) with subsystems (Se,) is uni-
formly asymptotically stable for the fundamental interconnection

matrix. Hence,

AV(tk,X)Ef < - q(IIXII)Ef, V(tk,X) C X -9 (15)

where §29 is defined by (8), v(tk,x) = 2 1 V,(tk,xi), and
J(IIXII)Ef = -AM[A(Ef)] jw(x) j2. Index Ef in the previous

notations (15) shows that the corresponding quantities are
determined for the fundamental interconnection matrix Ef.
Furthermore, the use of (14) yields

Av(tk,X)E < AV(tk,X)Ef < - 0(lXll)Ep V(tk,X) e 6 X -9e, VE.

From this result and uniform asymptotic stability of the equi-
librium for the fundamental interconnection matrix Ef it follows
that the equilibrium is uniformly asymptotically connectively
stable. If it is also 9 = Rf then -9e = 'In and the equilibrium
x = 0 is obviously uniformly asymptotically connectively stable
in the whole, which proves the theorem completely.

Summarizing the proof of Theorem 2 we obtain an evaluation
(!9e) of the domain of uniform connective attraction (92ac) of
large-scale system (S) with subsystems (Sj),

V(tO,xO) e . X -9 = lim IIx(tk; to, XO)IIE = 0,
tk+ + OJ

VE.

V. SUBSIDIARY RESULTS

To apply the results of Section III and Section IV to stability
analysis of a given dynamic discrete large-scale system its
Lyapunov function is required to be known. Proving results on
absolute stability of nonstationary or time-invariant multinon-
linear Lur'e type discrete systems in this section, we shall derive
Lyapunov functions of these systems described by vector dif-
ference equations of the form

x(tk+1) = A(tk)x(tk) + B(tk)y[tk,o1(tk),G2(tk), .,m(tk)] (16)

where A: Y-9 _* 1,2 and B: S Sn+m are matrices with time-
dependent elements, y:Y x Im gm is a vector function with
elements qk .Y x -+ '1, Vi = 1,2,. ,m, satisfying sector
conditions

o0. i(tk,'i)< K,
ai

V(tk,Ui)C- X ge, Vi = 1,2,.. .,m.

(17)
With vi: - x -1 11 has been denoted

,i(tk,X) = CiT(tk)x, Vi = l,2,.* *,m (18)

and ci: ,Y -* M' is a vector function, Vi = 1,2, - ,m. In this
section tk e- . indicate discrete values of time (k is an integer)

-° < . ..< tk-1 < tk < tk+1 < ... < + 00D

tk o +±° as k - ++o.

If all si are linear functions, qj(tk,,) = aici, ai [0,K,],
where all ai are real numbers, then system (16) is transformed
in a linear system

x(tk+ 1) = C(tk,A)x(tk) (19)
with matrix A = diag {M1lC2 ... am} and matrix C:.S x Sm-*f2

C(tk,A) = A(tk) + B(tk)D(tk,A).

Matrix D:Y x R' -, Imxn is defined by

(20)

D = A(cl(tk) C2(tk) ... CM(tk))T (21)
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and it is said to belong to class GO if and only if A E X, w

$t' fA:x Ec [0,Kj],Vi= 1,2,..,m}.

here time-invariant systems (26)

(22) x(tk+I) = Ax(tk) + BY[PTI(tk),72(tk), *(T,(tk) ]

To present the required subsidiary results in a simple form a
notation F: x -+ ,An2 is introduced

F(tk,A) = CT(tk,A)C(tk,A) - I (23)

where I is the nth-order identity matrix.
Theorem 3: If matrix F(tk,A), (24), which is associated with

linear system (19), is negative definite for every A E X, for every
tk eY, and for tk + + xo, then nonlinear system (16) is ab-
solutely stable on sectors [0,Kj, (17), Vi = 1,2, ,m.

Proof: Let matrix A(tk,x) be introduced and defined by

A(tk,x) = diag {al(tk,x) a2(tk,x) .X(tk,X)}

along with

x (tk,x) = Oi [tk,oi(tk,X)] Vi 1,2 * m
Ci(tk,X)

D(tk,x) will denote a matrix defined by

D(tk,x) -A(tk,X)(Cl(tk) C2(tk) Cm(tk))T-

From (17) it follows that

D(tk,x) e -0 V(tk,x) e fo x W". (24)

Using matrix notation C(tk,x) = A(tk) + B(tk)D(tk,x), system (16)
may be rewritten in the form

Xtk+ 1) =C [tk,X(tk) ]X(tk)-

Let F:Y7 x In n2 be

F(tk,x) = CT(tk,X)C(tk,X) - I

and let V(tk,x) = IIxlI2 be a candidate Lyapunov function for
system (16). The forward difference of function V determined
along solutions x(tk; tO, xO) of system (16) is found to be

AV(tk,x) = xTF(tk,x)x, x = x(tk; to, XO).

From the condition of the theorem and result (24) it follows that
F(tk,x) is negative definite for all (tk,X) E x Therefore, the
supremum eigenvalue A, of matrix F(tk,x)

As = sup AM[F(tk,x)]
,5 x Ml"

is negative, which implies

AV(tk,x) < -_ IA xsX2, V(tk,x) eY0 x 39", Vto eY. (25)

According to [15, theorem l] the proof is completed with the
previous result.

It has been shown that a generalized Aizerman conjecture is
true for a class of the nth-order multinonlinear discrete systems
(16) that fulfill conditions of Theorem 3. For these systems
function V = I!x112 may be accepted as a Lyapunov function. It
is also significant to note that the systems are exponentially
absolutely stable on all sectors [0,Ki] with the degree of stability
equal to In (1 -_ 2)-12, which results from (25) and (12) of
[16].

In [17], [18] the corresponding results are obtained with
respect to open sectors for a class of time-invariant Lur'e type
systems with one nonlinearity. As a conclusion of [18] it is
noted that the results there can be generalized to multinonlinear

oi(tk) Ci T(tk)X(tk), Vi = 1,2, -,in (26)

which can be also derived for compact sectors [0,-K,] as a
direct consequence of Theorem 3 as follows. Matrices A and B
as well as all vectors ci are constant in (26).

Corollary: If matrix F(A), which is associated to the linear
version of system (26)

F(A)-- CT(A)C(A)- 1, C(A) A + BD(A)
is negative definite VA es#, then system (26) is exponentially
absolutely stable on sectors [0,Ki ], Vi -- 1,2, ,m.

VI. APPLICATION AND EXAMPLES

It is known that for contractive both time-invariant [15] and
nonstationary [19] discrete systems Lyapunov functions may be
selected as positive definite quadratic forms

V.(xi)- XiTHiXi, Vi 1,2, -,s (27)

where Hi = Hi7, Vi= l,2,- ,s, is a real constant positive
definite ni x ni matrix. The same choice of Lyapunov functions
is adequate if subsystems are of Lur'e type and Popov [20] like
criteria [16], [21]- [26] are used to prove their (exponential [16],
[26]) absolute stability, which can be verified either by using
analytical tests of [27]-[29] or by applying general algebraic
criteria for positive realness relative to the unit circle that
have been recently proved by Siljak [30]. A class of sub-
systems of discrete large-scale systems under consideration, for
which Lyapunov functions can be chosen as quadratic forms
(27), has been broadened by proving Theorem 3 for nonstationary
multinonlinear Lur'e type subsystems.

Interconnections of composite system (S) are supposed to
satisfy the following inequalities for some real numbers Qij > 0
and XijI > 0 provided that a Lyapunov function Vi(tk,xi) of
subsystem (Si) is a quadratic form (27):

gT(k,xi)H1hi(tk,x) < E Cij 12( IjXi II) jS /2( IXj 11)
j=t

hiT(tk,x)Hihi(tk,X) < S E ijl j /2( Ijx. i)q (||XII)
j=l 1=1

OM(IIXill) = Oi3(llXiI), V(tk,x) c F X

Vi- 1,2,. -,s. (28)

If elements xij, of (4) are determined by

aijl = - bils + 2(ijj6j + Xijj, Vi,]j, I = 21,2, s (29)

then elements aij of matrix A should be computed according to

(6) and uniform asymptotic stability of the equilibrium of
composite system (S) may be tested by verifying negative
definiteness of the matrix (Theorem 1).

If system (S) is with variable structure and constituted of
subsystems (S3i) then interactions hi are assumed to fulfill the
following conditions for some real numbers Cij > 0 and dijj > 0
provided that the stability properties of subsystems (Si) are

proved by using quadratic forms (27) as their Lyapunov func-
tions

9, (tk,Xi)Hihi [tk,eilxl(tk),ei2X2(tk), * * eisjs(t'kA

<E eijSij ji 12 ( lIXi 11) ojl 12 ( IlXj 11),
j=-

V(tk,X) E , X 9, Vi - 1,2,- *,s (30)
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and

hi [tk,eiIxI(tk),e12X2(tk),

eisxs( tk) ]Hf hi[tk,ei X1xl( tk) ,ei 2X2(tk), * eisxs( tk)]
s s

< eijeilXjl¢jjj0X2(jjxjjj)o 112(IIXIII),
j=l 1=1

V(tk,x) xS x , Vi = 1,2,* **,s. (31)

Elements aij(E) of matrix A(E) are to be computed by using
s

a1j(E) = [-26il6jl + 2j(ejiji + eij4ij) + elielj(4ij + XIji)
1=

(32)
so that elements aij(Ef) of matrix A(Ef) are determined by (14),
which enables uniform asymptotic connective stability of system
(S) to be tested by applying Theorem 2.
Example 1: Let system (S) be composed of two subsystems

(S1,S2) described by

g1(tk,xl) = Al(tk)xl(tk) + bj(tk)q1[o1(tk)],o1(tk) = C1 (tk)x1(t)
= (ft1 exp 2tk - tk ) ft2 sin tk\

#I1 exp (2tk tk ) ft2 sin tk!

= ft exp [2(2tk - t2]
bl(tk) =

flexp [-2(2tk - tk )I)

Cl(tk) = C exp [ -3(tk2 - 2tk)]
\C2 exp [-2(tk2 - 2tk)] sin tk!

01(tk,al) = K1 sat ul

hl(tk,x) = (yi sin 2(x11 + Xl2)
Yl 1X2 11(1 - 11X2 [I)

=
.2 (33)

and

g2(tk,x2) - (X212 X222X21X22

h2(tk-X)= Y211x2 11(l - 11X2 I))
Y2 sat (X1 1 + X12)

-92 = {X2: 11x2 11 < 0.891 a M2. (34)
Real numbers ft, ft1, f2, Cl, C2, and K1 > 0 are supposed to
satisfy

2

E [max {Ifii + KftiCI, jli- KfitCi}]2 exp (2511) < 0.5. (35)

Applying Theorem 3 and (35) to subsystem (S,),
xl(tk+I1) = Al(tk)xl(tk) + b1(tk)o1 [o1(tk) ],

1l(tk) = C1 (tk)XI(tk) (S1)

we conclude that it is exponentially absolutely stable on sector
[0,K1] and that a function V1 = Ix1 112 may be taken as its
Lyapunov function. From Theorem 3 it also follows that
1(fxl11) = l3(1X III) is given by

Oh,(JIx, 1) = A,21Ixi1 2 (36)
where

Al2 _ { max IM[I - CT(tk,a)C(tk,) ] },
tkC-r
ae[O,Kl]

C(tk,ca) = Al(tk) + xbl(tk)Cl (tk).

Hahn [12, p. 207] showed that 92 -{X2: x2 < 1 is the
domain of attraction of subsystem (S2)

X2(tk+ 1) = 92(tk,X2) (S2)
and that V2(x2) = Jjx2 112 may be taken as its Lyapunov function
with 02(!Ix211) = 023(lIx211)

02(1!X211)= 11x2112(l-_lX2 12). (37)
It is to be noted that 020 Y but 02(v) > 0, Vv e (0,1), and
02(0) = 0.
In this example numbers acj, (4) are found to be

-lll -1 + 4ylV1`2 + 4yl2)J72

2112 = 121 = Yli- 2I2 + 2y 2AJ-2

1l22 - li~

a211 4Y2

0212 = a221 = 2Y2(2 + Y2)
L222 = -1 + 4Y2 + Y22

where

2= max AM[CT(tk,a)C(tk,)I]
tk f6g7

a e [O,Kl]

so that

a1l = -2(1- 4yj1Aj12 - 4y12A2 2 - 4Y2)

a12 = a2l - 2yAj-A2 + 4y1221-2 + 8Y2 + 4Y22

a22 = 2(1-y12AJ-2 - 4Y2 - Y22).

Applying Theorem 1 we conclude that the equilibrium x = 0 of
system (S) described by (33) to (35) is uniformly asymptotically
stable if

1 > max {(4Y121-122 + 4y12A)-2 + 4y2),(Y12A2j2 + 4Y2 + Y22)}
and

2(1 - y12A2- 4Y2 -Y22)(1 - 4yA 22- 4y12AI2 - 4Y2)

> (Y12AJ'2 + 2y12A2g2 + 4Y2 + 2y22)2.

A lower evaluation -9e of the domain of uniform attraction of
system (S) is given by

ge = {x: lxil < 0.89} a14
For example, if yi'l2< = Y2 = 0.05 then the equilibrium x = 0
of system (S) is uniformly asymptotically stable for any 22 e (0,1)
Example 2: Let system (S) with variable structure be composed

of three subsystems (S1,S2,S3), interconnections of which are
described by interconnection matrices E

tei e12 e13
E = e21 e22 e23

0 e32 e33

The fundamental interconnection matrix Ef is obtained as

Ef I I1 IE\o( 19.J

Subsystem (Sl) is described by

xl(tk+ 1) = Al(tk)xl(tk) + bl(tk)ol [al(tk)I
+ h1 [tk,el 1x1(tk),e12X2(tk),el 3X3(tk)] (38)
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with

ol(tk) = Clj(tk)Xl(tk)
and A1(tk),bj(tk),qj(oj),.9j are given by (33). Interaction h, is
defined as

h = (4; sat (ellxlI + e13X3 )
\4c sat (el lx 1 + e12X21)J

or by
AVi < - Oi3(IXI)

Comparison function qi is selected as

M(IX141) - Oi3(ifX1) = 2i2llxi 2, 'Vi = 2,3

(45)

(46)
(39) where

Function q1 = A2 IXl12 was already obtained for subsystem
(SI) (Example 1). Subsystems (Sj1), Vi = 1,2, are described by

xi(tk+ 1) = A ixi(tk) + bi Xi [i(tk) ]

+ hi [tk,eillX@tk),ei2X2(tk),ei3X3(tk)I, Vi = 2,3 (40)
where vi cJTxi and

hj2 = 52 sat (e22X21 + e23X31))
\2 sat (e22x21 + e2 1x1 1)

h3 = (C3 sat (e33x31 + e32X21)\ (41)
C3 sat (e33x31 + e32X22)

with C2, C3 > 0. Nonlinearities qi(ci), Vi = 2,3, are assumed to
satisfy sector conditions

Ai2 = _piAmi(Qi)

and A)Mi(Qi) > 0 is the minimum eigenvalue of matrix Q1,
Vi = 2,3.
Determining elements aij(Ef) of matrix A(Ef), which are

denoted simply by aij, according to (32) we find

a11 = 2[-1 + il-2(41||C1jI{M + 2 12 + 2r22)]

al 2 = a21 = ~1'27 1(ClIIIC1M + 12 + 42 11 C2 IIM + 42 )
al3 = a3l = At-l'3-'C1(IfC1l1M + 11)

a22 = 2[-1 + A2 2(C12 + 4C2 C2 IIM + 2C22 + 2432)]
a23 = a32 = A2-'A3-1(C211C211M + C2 + C3|IC3!IM + 2C32)
a33 = 2[- 1 + A3 + C2 + 2C3 + 2C32)] (47)

0 < < K,, Vi = 2,3 (42)

pairs (Ai,bi) and (Ai,ci7) are supposed to be completely control-
lable and completely observable, respectively, matrix Ai is re-

quired to be stable, that is, that all its eigenvalues )ij satisfy
lAijl < 1, Vi = 2,3. Furthermore, subsystems (Si)

xi(ti+ 1 ) = Aixi(tk) + bi Xi [ai(tk) ], Vi = 2,3 (Si)
are selected to satisfy Popov-like frequency criterion

Kj-' + Reyi(z) > 0, Vz: Izl = 1, Vi = 2,3 (43)

where z is a complex number, and

zi(z) = ciT(Ai - zI1)fbi.

Ii is the identity matrix of order ni.
Following references [16], [23], [31] it is proved that condi-

tion (43) is necessary and sufficient for the existence of real
numbers ci > 0 and yi, a real constant vector gi of order ni, and
real constant, positive definite ni x ni matrices Hi = H1T and

Qi = QiT such that

AiTHiAi- Hi = - -Qg-g,T

2AiTHibi + ci - 2yigi

KK,-' b1THibi = Yi2 (44)

Then, a quadratic form VL(xi) = xiTHixi is one of the Lyapunov
functions of subsystem (Si) [16], [23], [31] whose forward
difference along motions of (Si) is given by

AVi = -xiT(A1THiAi Hi + gjgiT)xi

[yi i(ai) + Xigi ]2 - Qi
where

= [a1 - bi(ui)KiJ]q1(a1) > 0, Vaj

so that it can be estimated either by

AVi ' _EIXITQIXI

where

IIC1 IlM= max IIC1(tk,ax1)II,
a, e[0,K11

Cl(tk,al) = Al(tk) + albl(tk)c (tk)

IICIIIM - max IICi(xi) II, C, = Ai + gibicT 'Vi = 2,3.
,xi e [Ki1,Ki2}

Applying Theorem 2 we conclude that the equilibrium x = 0
of large-scale system (S) with subsystems (38), (40) is uniformly
absolutely connectively stable if elements a1j = aij(Ef) (47) of
matrix A(Ef) satisfy

a~1< 0, all a12 >0 all a12 a13 <0a, I < °' a2l a22 > ° a21 a22 a23 < °

a31 a32 a33

VII. CONCLUSION

Stability properties of discrete large-scale systems have been
studied. It has been shown how both uniform asymptotic and
uniform asymptotic connective stability of large-scale systems
can be tested by using algebraic conditions that have been
derived without assuming a special form of Lyapunov functions
of subsystems. Results are valid for dynamic nonstationary non-

linear discrete large-scale systems. The stability properties of a

system are ensured by the negative definiteness of a real constant
symmetric matrix. The dimension of the matrix is equal to the
number of the subsystems, which is the most important ad-
vantage of the use of the vector Lyapunov function concept and
the decomposition principle. This advantage consists in reduction
of the matrix order.
The obtained results are applied to a class of the systems,

which has been broadened by proving a generalized Aizerman
conjecture as a subsidiary result. Furthermore, the results enable
to estimate the domain of uniform attraction and can be also
used to study different types of practical stability. The main
results of the paper broaden application of Popov-like frequency
criteria to a wider class of the systems including such large-scale
systems with subsystems whose Lyapunov functions are of the
Lur'e type and which satisfy the criteria. When Lyapunov func-
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tions of the subsystems are of type "quadratic form plus integral
of nonlinearity" then the application of the results is a matter
of simple but long algebraic manipulations based on those of
references [22], [23], [25].
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Comments on "On Arranging Elements of a Hierarchy in
Graphic Form"

MARCELLO G. REGGIANI AND
FRANCO E. MARCHETTI

1) In the above paper' Warfield states:
a) "In reviewing the literature related to hierarchies, it is

rather surprising that it has not been possible to find a work
that deals explicitly with methods for forming hierarchies....
[The methods] are not prominently displayed either in the
theoretical works that discuss hierarchies or in papers that
involve applications of hierarchical concepts."

b) "It seems appropriate to describe methods for arranging a
hierarchy in graphic form."

2) As far as statement a) is concerned, it seems to us that the
mathematical theory of partially ordered sets [1], [2] often
deals with problems concerning hierarchies quite explicitly. In
any case, this theory has been extensively employed to derive
useful criteria for forming hierarchies. We have recently proposed
an approach on the adequacy of models, based on hierarchical
concepts [3]. [4], and are at present working along the same
line. We have also suggested applying these concepts to auto-
mated medical diagnoses [5] and are at present working, with
similar techniques, on the problem of computer-aided design.

3) We agree with the statement b). We do, however, wish to
recall that the problem of arranging hierarchies in graphic form
has been extensively studied [1] (Hasse diagrams). We have
recently proposed a modified diagram to better suit special
display requirements [5].

4) In conclusion, we do not agree completely with statements
a) and b). Nevertheless, the algorithms proposed by Warfield to
graphically display ordered sets are certainly useful in practical
applications.
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Author's Reply2'3
My interpretation of the correspondence of Reggiani and

Marchetti is that it deals with the difference between analysis
and synthesis. The theory of partially ordered sets and lattices is
clearly relevant to the construction of hierarchies and multilevel
graphs that involve feedback. I believe that this theory had not,
until very recently, been translated into practical procedures
whereby such structures can be systematically synthesized.
Many people are interested in hierarchies and multilevel

systems who are in careers rather remote from the theory of
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