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Fig. 1. Nominal state history.
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Fig. 4. Inverse time-constant performance.

Finally, this technique of shaping the open-loop trajectory
has been applied to more complicated second-order systems with
unknown parameters with similarly improved estimation of the
states and unknown parameters at the terminal time [7].
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Fig. 2. Control history.

Fig. 3. State estimation performance.

An Adaptive Estimator with Learning for a Plant
Containing Semi-Markov Switching Parameters

RICHARD L. MOOSE AND PAUL P. WANG

Abstract-An adaptive state estimator with learning has been developed
to help solve the problem of state estimation of an unreliable linear
system operating in Gaussian noise. By definition, the unreliable plant
has certain parameters that can vary randomly within a finite set of
possible values at times which are unknown to an observer. In modeling
the stochastic system, it will be assumed that the variations in the plant
configuration can be described by a semi-Markov process. By incorporat-
ing the semi-Markov process into a Bayesian estimation scheme an

adaptive state estimator was developed which could handle the switching
plant or switching environment problem without computer storage
increasing as time progresses.
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I. INTRODUCTION

At the present time, there exists a great deal of activity con-
cerning sequential state estimation of dynamic systems. The
original work in this area resulted in the familiar Kalman-Bucy
filter, which represents the optimal linear approach to state
estimation when the disturbances can be modeled by a Gaussian
process [1], [2]. The work to be discussed herein concerns an
extension of Kalman filtering theory to estimate the state of-an
unreliable linear dynamic plant when certain plant parameters,
at times which are unknown to an observer, switch randomly
within a finite set of real possible values. In addition, the random
parameter variations are assumed to occur relatively slowly with
respect to the response time of the system.

Briefly summarizing past efforts in this direction, we find that
in 1965 Magill [3] formulated and solved the state estimation
problem of a linear dynamic system that had an unknown con-
figuration which had been randomly chosen from a set of n
possible plant configurations, and once selected remained there-
after fixed. Hilborn and Lainiotis [4] next extended Magill's
work from a scalar to a vector observation case and included a
new method of calculating the weighting coefficients, but again
it was assumed that once "learned" the system configuration
would remain thereafter fixed. More recently, Ackerson and Fu
[5 ] described an extension of the Kalman-Bucy filter which can
be applied when the noise influencing the system is not Gaussian,
but comes from a group of Gaussian distributions. These dis-
tributions act one at a time upon the system, with the transition
from one noise source to another being described by a discrete
Markov transition matrix. This interesting problem, once solved,
was termed the switching environment problem. More recently,
other investigators, notably, Hilborn and Lainiotis [6]-[8], and
Parekh and Melsa [9], [10], have contributed toward the solu-
tion of the unreliable system problem. The resultant algorithms,
however, appear difficult to implement for large-scale random
varying systems, and it is felt that perhaps a different method of
analysis may be worth presenting.

II. NEW RESULTS

This correspondence extends the earlier work to the case where
the unknown plant configuration (matrix of m state equations)
randomly switches at random times between a finite set of n
possible plant configurations. The rate of switching is assumed to

be considerably slower than that of the observation sampling
rate; also, the random switching of the unreliable plant will be
modeled by a semi-Markov process. Briefly, a semi-Markov
process is a probabilistic system that makes its state (plant-
configuration matrix in our case) transitions according to the
transition probability matrix of a conventional Markov process.
However, the amount of time spent in state i before the next

transmission to state j is a random variable [11]. It is this
property of a random switching time that distinguishes the more
general semi-Markov process from a Markov process.
By modeling the switching plant in this manner, the problem

of computer storage increasing with increasing time was com-

pletely eliminated. In addition, it became possible to directly
incorporate the semi-Markov switching statistics into the learning
portion of an adaptive state estimator. The adaptive filter (Fig. 1)
essentially consists of a bank of n Kalman filters, each matched
to a possible plant configuration si, the outputs of which are

weighted by a time-varying a posteriori probability. The key
factor which makes this filter unique from the previous filters is
that in calculating the critical weighting (aposteriori probabilities)
coefficients a measure-predict-measure technique is used where

z
-I+1
Data
Input

Estimate

Fig. 1. Adaptive state estimator.

the semi-Markov statistics of a random starting process are used
to make the intermediate predictive step.

In the verification of the adaptive filter numerous computer
runs were made under many different signal-to-noise ratios and
possible system configurations. The results reported on here
show the operation of the adaptive filter under worst case con-
ditions where the measurement errors are large and the plant
configuration changes rapidly.

III. DERIVATION OF ADAPTIVE FILTER

We are now in a position to develop the adaptive filter based
upon the semi-Markov statistics that govern the switching plant.
The discrete form of the linear system equations can be ex-

pressed by
Xk+1 - Ok(Si)Xk + Fk(Si)Wk

Zk+l = Hk+lXk+l + Vk+l (1)
where Xk+ 1 is the m state vector at time tk+ 1; Sk(Si),Fk(si) are the
state and disturbance transition matrices, both of which are func-
tions of plant configuration s, i = 1,2, *,n; Wk is an r-dimen-
sional disturbance vector of zero-mean Gaussian inputs; Vk+1 is
an i-dimensional vector of zero-mean Gaussian measurement
error; and E[WkVkT] = 0, E[WkWjT] Qk6ki, and E[VkVj ]
Rk6kj.
To develop the adaptive filter a conventional Bayes estimation

procedure is used. The conditional mean can be written as

follows:

(2)Xk+l = E Xk+EP(Xk+l lZk+l)
Xk+ I

where

P(Xk+1 IZk+1)
n

E p(Xk + 1 Zk + 1 Sk + 1 - Si)P(Sk +1
i=l

Si (Zk+ 1)-

(3)

Here Zk+1 represents the observation sequence from time index
1 up to time k + 1 and P(Sk+ 1 = si Zk+ 1) is interpreted as the
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probability (system is in state i at time k + 1 data sequence
Zk+1). Combining (2) and (3) and interchanging the order of
summation, the following results are obtained:

n

Xk+1 E Xk+1(S)P(Sk+1 = Si ! Zk+l) (4)
i=l1

where

Xk+1(Si) = [xk+l Zk+,, Sk+1 = s1]s (5)

Equation (5) can be closely approximated by a conventional
Kalman filter due to the extremely low probability (in the order
of 0.01 for many practical cases) of system switching during any
one sample interval. A further area of investigation would be to
study the effect on performance of the Kalman filtering assump-
tion if the probability of transition were increased by a significant
amount. Thus far there is nothing new in the derivation, and (4)
will be modeled by a bank of n Kalman filters, each matched to
a particular system configuration si and multiplied by a corre-
sponding a posteriori probability. Upon a cursory examination
of (4) and (5) it would appear to be essentially the same as those
previously reported [3 ]- [5], however, the main difference lies
hidden in the computation of the time-varying weighting func-
tions p(sk+ = Si Zk+ 1).

IV. CALCULATION OF WEIGHTING COEFFICIENTS

To recursively compute the a posteriori probabilities p(sk+ 1 =
Si Zk), the following sequence is used: first, the previously stored
value P(Sk - sa Zk) is updated by a semi-Markov prediction
process to p(sk+1 = si Zk); then a new measurement is taken
and p(Sk+1 = Si Zk+1) is computed, is used in the adaptive
filter, and then is stored to begin the next cycle.
The preceding qualitative procedure can be expressed math-

ematically by the following set of equations, where use is made
of data sequence Zk+4 _ {Zk,zk+ }. Expanding (3), we have

P(Sk+1 = Si lZk+l) = P(Zk+ 1 k+ 1 = Si,Zk)P(Sk+ 1 = Si Zk)
P(Zk±+ I Zk)

(6)
The first term, P(Zk+1 Sk+ 1 = Si,Zk), can be approximated by

a Gaussian density for those cases in which the probability of a
transition occurring between any two adjacent time samples is
very small. It has been pointed out that the actual density is not
Gaussian, but is in fact a weighted sum of Gaussian densities.
This is quite true; however, it was determined experimentally
from computer simulation that even when the plant randomly
switched as often as the duration of several system response times
the Gaussian approximation was quite good. In addition, it is
pointed out in the Appendix that P(Zk+l sk+ 1 = si,Zk) is ap-
proximately normally distributed when the probability of a
transition occurring between samples is small, and it can be
represented by the known Gaussian density function established
from the Kalman filtering algorithms conditioned on si, i.e.,
N {HD(si)xk(si), [HMk+ 1 (si)HT + R] }.
The second term in the numerator of expression (6), p(sk+1 =

Si Zk), is the predicted value that will be generated by the semi-
Markov process. Expanding P(Sk+ 1 = si Zk), we find

n

P(Sk+i = Si Zk) = E P(Sk+I = Si Sk = sz,Zk)P(sk = So Zk).
x= 1

(7)

The first term in (7) is conditioned on both Sk = sa and data
sequence Zk. We have already established that Zk and p(sk = s5)

are strongly dependent. In fact, Zk actually aids in determining
P(Sk = s), but, since we are given this information, we can
express P(sk+1 = Si Sk s= , Zk) by p(sk+1 = si Sk = s). The
second term of (7), p(sk = sa Zk), is known from the previous
recursive calculation. Combining (6) and (7),

P(Sk+1 = Si Zk+1)

n

E P(Zk+ 1 I Sk+I = Si,Zk)P(Sk+1 = Si Sk = SO)P(Sk = S. Zk)

P(Zk+ 1 I Zk)
(8)

The only term undefined in (8) is p(sk+ 1 = Si Sk = s), which
can be expressed as probability (system is in state i at time tk+ 1I
system is in state a at time tk), but this is exactly the definition of
the "random starting" probability 0ji(tk+1 - tk) found in the
literature dealing with semi-Markov processes [11]. Therefore,
(8) can be expressed in its final form by

P(Sk+1 = SiIZk+l)
n

E P(Zk+1 Sk+1 = Si,Zk)P(Sk = Sa Zk)ozi(tk+l - tk)
= a=l

P(Zk +I1 Zk)
(9)

where the denominator, being common to all terms, acts as a
normalization factor and need not actually be computed. It
should be pointed out that the form of (9) is not new, only the
semi-Markov statistic that is used to make the intermediate
predictive step is different. However, this results in a much
simpler form of computation and does not require computer
storage increasing with increasing time.

In the case of uniform sampling,

O,i(tk+ I - tk) = Oai [(k + 1)T - kT] = 6ai(T)
which depends only upon the sample spacing T. One other item
needed in the computation of p(Sk+ 1 = s I Zk+ 1) is the initial
probability of being in state si at time zero. It was found that the
adaptive filter was relatively insensitive to the choice of initial
probabilities. Since as data is observed the adaptive filter rapidly
learns the true system configuration, one might as well pick
equally probable a priori estimates with little degradation in
expected performance.

V. EXAMPLE AND SIMULATION
To properly exercise the adaptive state estimator of (4) and

(9), a second-order linear system was chosen to randomly switch
between three possible (0j,Fj) configurations. In modeling the
semi-Markov process it was decided to set all density functions
hfj(r) equal to 0.07(exp (- 0.07r). This gave a mean switching
time ij of approximately 14.3 s, which represented about 29
time samples. In other words, the "unreliable" system will be
changing state fairly rapidly, making it more difficult to learn and
track the true system si. Using the semi-Markov design equations
for an identically distributed exponential density function, it was
found that Oij(T) = 0.007i . j and 6ij = 0.986. With this in-
formation we are now able to simulate the entire system and
filtering algorithms on an IBM 360 digital computer.

In writing a program to simulate the switching system it was
assumed that there are three possible plant configurations si. A
deterministic input of the form u(k) = 0.8k exp (-0.033k) was
also added to the plant input in addition to white noise w(t). The
adaptive filter of Fig. 1, consisting of three Kalman filters, was
then synthesized with input data z(t) coming from the switching
plant.
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x State Estimate of x
0

x True value

Fig. 2. State estimate %O and true value of x plotted versus time and system transitions T1, T2, T3.
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Fig. 3. Aposteriori probabilities versus time and system transitions T,, T2, T3.

Results shown in Fig. 2 are for the case of Q = 1.0, R = 4.0.
There are (unknown to the adaptive filter) three plant transitions
labeled T1, T2, and T3, respectively, whose time durations are

random variables chosen from the exponential density function

hij(T). It can be seen from Fig. 2 that the adaptive filter estimate

*o (solid line) tracks the true value of state variable x (dotted
line) very well. The main source of error in the filter occurs

during the learning time (the interval immediately after a plant
transition) while the a posteriori probabilities make very large
transitions.
To better examine what happens during the switching intervals,

consider the set of curves shown in Fig. 3, in which the weighting
coefficients P(Sk = si Zk) are plotted versus time for Q = 1.0,
R 4.0. Since the switching sequence is s, to S2 to sI to S3, the

probability curve P(Sk = si Zk) should be close to unity during
the period of time when the system is truly in state si and should

approach zero at all other times. Fig. 3 shows that indeed this is
the case with probabilities between 0.90 and 0.999 once the true
system is learned.

VI. CONCLUSION
A nonlinear state estimator based upon Kalman-Bucy theory

and semi-Markov statistics has been developed to help solve the
switching plant problem where the plant configuration randomly
switches between a finite set of possible configurations at un-

known times. By utilizing the semi-Markov process to model the
switching plant and incorporating the process into the design of
an adaptive filter, the problem of growing computer storage was

completely eliminated. The design procedure was illustrated by
the analysis of an example chosen to simulate a rapidly switching
plant in the presence of a low signal-to-noise ratio (large measure-
ment error). Results were analyzed, and the performance, with

I -.F- lw_
i I I I
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the exception of a short period of learning, was shown to ap-
proach that of an unrealizable optimal filter whose parameters
automatically change with each change in the plant. It should be
emphasized that the adaptive state estimator is suboptimal due
to the restrictive assumptions placed upon its design. The restric-
tions are as follows: 1) that the filter of (5) can be realized by a
Kalman filter, and 2) that the unreliable system switch slowly
enough such that the first term of design equation (9) can be
represented by a Gaussian density function. In practice this is
not nearly as restrictive as it sounds since many unreliable
systems change configuration fairly slowly with respect to their
normal system response time.

APPENDIX

APPROXIMATION OF P(Zk+1 Sk+1 -= S,Zk)

There are several possible approaches that can be taken to
obtain an accurate approximation for the term P(zk+1 Sk+I
Si,Zk) appearing in the a posteriori weighting equation (9). The
approach chosen here will employ Bayes' rule and assume that
the system parameters change slowly with respect to the sampling
rate. An assumption generally valid for many practical purposes,
as can be seen from the example given here, is bjg = 0.986 and
-,j= 0.007. Thus, bij can be approximated by the Kronecker

delta function bij
By Bayes' rule, we have

P(Zk±+ I Sk+I = S1,Zk)
_n

=L P(Zk+1 Sk = Sa, Sk+ = Si,Zk)P(sk = S. Sk+1 = Si,Zk).
(A-1)

Now, the first term is equal to the normal distribution

N[Hk+ 1k(S)Xk(s,),(Hk+ lMk+ 1(s)Hk+ 1 + R)]

while the second term can be approximated by the Kronecker
delta 6i5. Equation (A-1) can then be rewritten

n

P(Zk±+1 Sk+1 = Si,Zk) - P(Zk+i1 Sk = Sa, Sk = Si,Zk)6i5

- P(Zk+1 I Sk = Si Sk+ = S,,Zk)

which represents the normal distribution

N [Hk+±1 S(si)*k(s,),(Hk+lMk+ l(si)Hk+I 1 + R)].
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Absolutely Expedient Learning Algorithms for
Stochastic Automata

S. LAKSHMIVARAHAN AND M. A. L. THATHACHAR

Abstract-A general nonlinear reinforcement scheme of the reward-
penalty type for a multistate stochastic automaton acting in stationary
random media is described. A general but simple condition of symmetry
of the nonlinear functions figuring in the reinforcement scheme is shown
to be necessary and sufficient for absolute expediency (monotonic
decrease of the expectation of the average penalty in all stationary
random media). Various schemes are simulated and the results are
compared. An adaptive updating of the parameters in the scheme to
obtain faster convergence is proposed.

I. INTRODUCTION
The stochastic automaton is a discrete finite-state device having

m(2 2) states Wi, i = 1,2,..-,m. At any instant of time the
automaton, being in state W(n) = Wi, is governed by the state
probability distribution 7r1(n), where n is the discrete time variable
which takes on values 0,1,2,. .. such that at all times

(1)
__m

2 7ri(n) = 1.
i =1

When in state Wi the automaton gives an output or action Yi.
The response S1(n) of the medium or environment to this action
Yi appearing at the input to the automaton can take on two
values: Si(n) = 1, known as the penalty input, with probability
pi; and Si(n) = 0, known as the nonpenalty input, with prob-
ability qi - 1 - pi. For simplicity, the pi, i - 1,-.- ,m, are
called the penalty probabilities of the medium. It is assumed
that there exist unique Pi and Pk such that

p =min {pj}
J

Pk = max {pj

(2)

(3)

and that the pj do not vary with time, that is, the medium is
stationary random. Except for the fact that there exist unique pi
and Pk satisfying (2) and (3), the actual values of the pj and the
values of 1 and k are generally unknown. The average penalty
the automaton receives from the medium is

m

M(n) = 2 7i(n)pi=7r,(n)p
i=l

(4)
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