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qualify themselves, and changes of venue are sought and granted,
all on behalf of this principle. The scientific investigator, on the
other hand, is not under so urgent a mandate. An article by the
eminent Dirac [1] was published in spite of its central theme
that "a theory with mathematical beauty is more likely to be
correct than an ugly one that fits some mathematical data."
In fact, this patently biased statement was singled out for prom-
inent display by the editors of Physics Today. Similarly, it is well
known that Einstein resisted the tide of modern physics because
he refused to believe that "God rolls dice with the universe."
That Einstein's intuition is right or wrong is immaterial. (Indeed,
it has recently been suggested by this author that he was right
after all [2].) What matters is that the source of his conclusion
rests in intuitive bias. In general, it is quite apparent from the
literature that the rules of the game do not preclude bias on the
part of the scientist. If anything, as Jensen learned, he may incur
the displeasure of his colleagues if he fails to display sufficient
bias [3]. Thus whereas the judicial system filters out bias en-
tirely, the scientific system filters out only unpopular bias. Again
pragmatics must be considered. The scientific researcher needs to
be knowledgeable in his subject, and knowledge, according to the
judicial premise, breeds bias. But still again, in its total in-
tolerance of any bias, popular or unpopular, the judicial system
remains more objective than the scientific system.

SUMMARY AND CONCLUSIONS
While the scientific and judicial fact-finding systems are

analogous in many ways, the latter is more skeptical and objec-
tive. This is due, at least in part, to pragmatics. However, it
would benefit scientists to emulate the judicial method to the
extent possible in the areas of skepticism and objectivity. For
example, it might be worthwhile, and certainly would be in-
teresting, if basic scientific ideas were presented to an intelligent
but unknowledgeable finder of fact under the judicial system.
If, for example, the theory of the calculus were on trial before a
nonmathematician, and were being defended by Dr. Function, a
portion of the transcript might read as follows.
Prosecutor: Now, Dr. Function, you have stated that if a and b

are real numbers such that a + b = a, then b must be zero.
Dr. Function: That is correct.
Prosecutor: You have also stated that if Ax is allowed to assume

the value dx, then f'(x) + Ax = f'(x).
Dr. Function: That is also correct.
Prosecutor: Then you admit that dx = 0.
Dr. Function: I didn't say that.
Prosecutor: But you did say that if a + b = a, then b = 0, and
you also said that f'(x) + dx = f'(x). So either dx = 0, or
your first statement isn't true; if a + b = a, then b might be
zero, and it might be something else called dx. Isn't that right?

Dr. Function: I suppose you could think of it that way.
Prosecutor: All right. Now, will you please tell the court how
you know dx isn't zero.

Dr. Function: Well, of course, that's trivial. Dividing by zero is
prohibited because it does not produce a unique result.
Dividing by dx does produce a unique result. So, clearly, zero
and dx are not the same.

Prosecutor: That nonunique result, that's bad, is it?
Dr. Function: I don't know what you mean by "bad." A non-

uniquwt result is a meaningless and arbitrary result. So we
prohibit division by zero in order to avoid being meaningless
and arbitrary.

Prosecutor: I see. Now, a moment ago you admitted that if
a + b = a, then b might be zero, and it might be dx. I'm not

a mathematician, but I do know that if a + b = c, then
a = c - b. So I would point out that you have agreed that
a - a = 0 or dx. I believe that's what you mean by a non-
unique result, and so I must conclude that you're in favor of
prohibiting the subtraction of a number from itself. Is that
right?

Dr. Function: You're twisting my words. I never said that
subtraction could produce a nonunique result.

Prosecutor: The record will show that you did. And while I
have no doubt that the calculus works, I submit that you have
no idea at all of why it works. No more questions.
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Detecting Subsystems of a Complex System

ROGER C. CONANT

Abstract-In studies of complex systems one may be faced with a
bewildering amount of data collected on variables of the system without
knowing much about the way these variables interact. A measure for the
strength of the pairwise interaction of variables in a dynamic system is
proposed. In the common case in which the variables have a natural
grouping into subsystems within which interaction is strong and between
which interaction is weak, the pairwise interactions will usually suggest
what the grouping is. Another measure, of interaction within and between
subsystems, then serves to verify or discredit the grouping. This de-
composition of the system into weakly connected subsystems allows the
observer to more readily understand the system by lowering its apparent
complexity and directing his attention to appropriate parts of it for more
intense scrutiny.

I. INTRODUCTION
A system is commonly thought of as "complex" if it is made

up of a large number of parts interacting in a nonsimple way.
The linguistic usage, implying as it does that complexity is an
attribute of the system itself, obscures the fact that complexity
is a relation between an observer and the thing observed, i.e.,
that the same system can be seen as of greater or lesser complexity
by different observers or even by a single observer before and
after he comes to "understand" it. This correspondence is
motivated by the assumption that the apparent complexity of a
system can be lowered by a judicious grouping of its variables
into subsystems, as for example, when on the schematic diagram
of a radio its subsystems (power supply, detector, amplifier, etc.)
are outlined by dotted-line boxes which suggest a block diagram.
Broadly put, the goal of this correspondence is to enable the
observer of a complex system to see it as less complex by en-
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TABLE I

Time
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

X1 1
X2 1
X3 1
X4 1
X5 1

1 3 3
1 2 2
3 3 3
2 2 1
21

3

3

2

3
l

2 1
1 2
2 2
2 2
1 2

l
2

2

2 2 1 1 22
2 1 1 22 2
3 2 2 13 2
1 2 2 22 1
2 2 1 21 2

abling him to interpret it, when possible, as nearly decomposable
into a set of interrelated subsystems between which the inter-
actions are weak but not necessarily negligible.
Not all complex systems have a hierarchic' structure allowing

such a decomposition (into subsystems, sub-subsystems, etc.),
but Simon in his classic paper [I ] ha.s set forth strong arguments
for believing that hierarchic structure is the rule rather than the
exception in physical, biological, social, symbolic, and many
other types of systems. When faced with a complex system which
one is trying to understand, then, it is reasonable to start by test-
ing the hypothesis that it has a hierarchic structure and is nearly
decomposable into subsystems within which the interaction of
variables is relatively intense and between which the interaction
is relatively weak, for if that is the case attention can be turned
to the detailed workings of each subsystem. One of Simons'
main theoretical findings is that [1 ] "in a nearly decomposable
system, the short-run behavior of each of the component sub-
systems is approximately independent of the short-run behavior
of the other components." This result, together with the assump-
tion (nearly a corollary) that the short-run behavior of each of
the parts within a subsystem is not approximately independent
of all other parts in its subsystem, indicates that to form a
tentative grouping of parts into subsystems we need a measure
of the intensity with which the parts interact. The following
sections explore such a measure as well as a measure of the
degree of interaction within and between the groups, suggest
how these measures can be used to produce and test hypotheses
about subsystem groupings, and illustrate the technique with an
example.
We suppose, then, that the investigator has before him a mass

of data obtained by repeatedly sampling the values (not neces-
sarily metric) of many variables of a complex system which he'
can at least partially observe but not necessarily control (an
ecological system, for example); he would like guidance in
searching for subsystems of the complex whole. Part of the data
for a rather modest system might look like that given in Table I.

1. THE DECOMPOSITION TECHNIQUE
We assume a set of K primary variables, not necessarily

metric, each of which has been observed once every "standard
time increment" for N increments, giving a total of K. N
observations. With each primary variable is associated a derived
variable Xj, 1 < j < K, whose valu'es are taken to be the
positive integers from I through Mj (finite) for notational con-
venience. If the primary variable is not metric, these integers
represent its categories, and if the primary variable is metric,
these integers represent its values, or ranges of its values if it is
a continuous variable. Categories or values must be grouped or
ranges quantized so as to make Mj reasonably small; that matter

' Hierarchic does not imply subordination by an authority relation.
Quoting Simon [1], "By a hierarchic system, or hierarchy, I mean a system
that is composed of interrelated subsystems, each of the latter being, in
turn, hierarchic in structure until we reach some lowest level of elementary
subsystem."

and limits on the "standard time increment" will be discussed in
more detail further on.
The variables Xj may be grouped into sets; no confusion results

if in this case we let Sj denote the set {Xjl,Xj2, ,Xj"j} so
grouped and also the vector variable (Xil,Xj2,' .,Xjn> whose
components comprise the set. When necessary, reference will be
made to values at different times by superscripts or primes;
Sjk denotes Sj at the kth measurement, (Xi,Xi'> is a vector
variable whose components are Xi measured at two successive
time increments, and so on.

It is well known [2]--[4] that the entropy of Xj, denoted
H(Xj), is a reasonably good measure of the nonconstancy or
variability of Xj. H(Xj) is calculated from the observations on
Xj by the following formula:

1 Mj
H(Xj) = 1og2 N -- E ni log2 n

Ni=l
( a)

in which n1i is the observed number of occurrences of the event
{Xj = i } and ZMJ, n, = N. If the events occur with definite
probabilities pi, then H(Xj) - pi log pi as N -+ oo, and
(la) can be thought of as an empirical estimate of the true en-
tropy; however, we do not need to assume the existence of the
pi's in what follows. All quantities discussed in this correspon-
dence, as well as the relations "statistical independence" and
"statistical dependence," are interpreted as estimations based
on the observations over a finite time span.
The entropy of Sj (Xjl,Xj2,' ,Xj,,j) is denoted by H(Sj).

It is a nonnegative measure of the total amount of activity or
variability in the set Sj, and it is calculated by a formula similar
to (la):

H(SJ) = 102 N - 1 : ni log2 ni (I b)

in which, however, ni is interpreted as the number of occurrences
of the ith possible value of the vector Sj. As before, E ni = N.
The entropy of the union of two sets Si and Sj is denoted by
H(Si,Sj), and so forth.
The observed transmission between Si and Sj is denoted

T(Si: Sj) and is defined as follows:

T(Si: Sj) = H(Si) + H(Sj) - H(Si,Si). (2)
This is a nonnegative measure of the strength of the relation
between Si and Sj; it is zero if and only if Si" and Sjk are statis-
tically independent (when averaged over all k) [5, pp. 41-43],
and it is a maximum (equal to min {H(Si),H(Sj)}) if and only
if one vector variable is strictly dependent upon the other, that
is, Sik is a function of Sjk, for all k < N, or vice versa. The
generalization of (2) is as follows:

m
T(S1 : S2: Sm) H(Si) H(S,S2,-',Sm). (3)

i= 1

This is a measure of the total constraint holding between, but
not within, the sets SI through Sm

Simultaneously measured variables are implied unless a con-
trary indication is given by primes or superscripts. Thus T(S: Sj)
is a measure of the strength of the relation between Si and SJ
when observed simultaneously; T(Xi: Xj') measures the effect of
Xi on Xj one time increment later, etc. With regard to T(Xi: Xj'),
note that in observations over N time increments one would
obtain N samples of Xi but only N - 1 samples of Xj' and
(Xi,Xj'>. Since for statistical validity one must have an equal
number of samples from each variable, the last sample of Xi
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would not be used, and all entropies would be calculated from
N - I occurrences.

Entropies and transmissions have been used for some time as
measures of variability and relatedness, respectively, and their
properties are well known. The notation used in this correspon-
dence is consistent with that of Ashby [6], who has developed
many identities relevant to the calculations suggested here.
The usefulness of T( ) in the decomposition of complex

systems is suggested by Simon's statement quoted earlier. Sup-
pose a system is in fact "nearly decomposable" into subsystems
S1,S2, ,SSm (implying a partition of all variables in the system);
then one would expect that the constraint holding between the
subsystems over a short time span would be weak compared to
the constraint within them. If the time increment is chosen
properly (on the order of the time constants of the variables and
short compared with time constants of subsystem interactions),
the constraint holding over one time increment within the jth
subsystem Sj = {Xjl'XJ2,. ,Xj,} will be measured reasonably
well by Twj defined as

T.j = T(XjI: Xi '': XJ2 : Xj2' Xjnj Xjn)
since this transmission measures the nonindependence of all
variables in the subsystem over the time increment. The strength
of the relation between the ith and jth subsystems over one time
increment is measured by Tbhj, defined as

Tbij = T(<S1,S,'): (Sj,SJ'>)

and the constraint between all subsystems over one time in-
crement is measured by Tb:

Tb = T(<S,,S,'>: <S2 :S2 ) <Sn,S.'))
Tb is an upper bound for Tbij [6].

In a nearly decomposable system Tbhj is small compared to
Twf + Twj, for all i and j, and in addition Tb is small compared
to Fj Twj; the calculation of these transmissions thus allows
verification of a proposed grouping of variables into subsystems.
The question remains, how does one infer a proposed grouping

from the observations? A reasonable measure of the effect of Xi
on Xj one time increment later is the normalized transmission ti:

= T(XA': Xi')

H(Xj~')
T(XA : Xj') is strongly affected by the number of categories or
quantum levels in Xi and Xj, and the normalization indicated
largely eliminates that effect. The result, t,j, is always between
zero and unity, zero if and only if Xi and Xj' are statistically
independent, and unity if and only if Xj' is strictly determined
by Xi. Although odd situations can be contrived in which it
works poorly, one reasonable procedure for generating a group-
ing of variables into subsystems is to calculate the tj for all i and
j and then deduce, by starting with the largest value and working
down, which variables most strongly affect which others. The
grouping can then be checked with the verification procedure
suggested in the previous paragraph.
An example will be given in the next section to illustrate the

procedure, and in Section IV some of the strengths, weaknesses,
and constraints upon the use of the technique will be discussed.

III. EXAMPLE
A synchronous system of one binary random source and five

finite state machines (each having three or fewer states and
three or fewer inputs) was simulated, and a history of 1000 steps
was generated. The first few values taken by the finite state

TABLE 11

Xi'
t'i Xl' x2' X3' X4' x5

XI 0.098 0.013 0.690 0.161 0.073
X2 0.002 0.023 0.002 0.145 0.012

Xi X3 0.109 0.012 0.353 0.044 0.017
X4 0.002 0.413 0.002 0.009 0.021
X5 0.000 0.186 0.002 0.259 0.195

Fig. 1. Seven strongest pairwise relations, as indicated by arrows whose
thickness is proportional to tij.

machines are shown in Table I. From the history, frequency
tables for all the pairs (X,Xj' > were compiled, and the ti, were
calculated. The results are shown in Table II. Table II indicates
that the strongest effect is that of XI on X3'; then X4 on X2', and
so on. Fig. 1 shows the result of drawing arrows whose thickness
represents tj between circles representing the variables down to

t,4, which is the first link between the sets S, = {AX,X3} and
S2 = {X2,X4,X5 }. The figure clearly suggests that the system is
nearly decomposable into S, and S2 as subsystems. To confirm
this, frequency tables were compiled to enable calculation of

T., = T(XTX X ' : X3 : X3')
T.2 = T(X2: X2': X4: X4' Xs: Xs')
Tb = T(<X,,X,',X3,X3'>: <X2,X2',X4,X4',X5,X5')).

The frequency tables required are those for X, through X5 (the
tables for XI' through X5' are assumed to be nearly identical to
these) and for the vector variables (S,,S1'>, <S2,S2'>, and
(S ,S5',S2,S2'). The entropies are calculated from these tables
by (1) and the transmissions from the entropies by (3).
The results are as follows: T,, = 1.957, TW2 = 2.721, and

Tb = 0.422. Since Tb << (T,1 + T.2), the calculations confirm
that the system is indeed nearly decomposable into S, and S2.
By way of contrast, if we had chosen S,* = {X,,X2} and
S2*= {'X3,X4,XA}, a decomposition which Fig. 1 indicates is
a poor grouping, the results would have been as follows: T,, =

0.168, TW2 = 1.966, and Tb = 2.967. Clearly, the constraint
between S,* and S2* would not have been small compared to
the constraints within them.
A complete description of this system and an analysis of its

behavior is given elsewhere [5, pp. 129-141]. Here it suffices to
say that a detailed analysis supports the reasonableness of the
decomposition which has been suggested and confirmed in this
example.

IV. DIscussION
Of the three common measures of relatedness-the correlation

coefficient r, the correlation ratio ?,1 and the transmission T-the
transmission is the most general since it does not require the
values of the primary variables to be numerical or ordered.
Attneave [2] has discussed the relation of T and r; the relation
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is simple and monotonic for some common distributions. The T
measure is nonnegative, which for our purposes here is an
advantage, and the fact that T is zero if and only if the variables
are unrelated is a clear advantage over the correlation measure,
which, for example, would show XI = sin t and X2' = Isin t to
be uncorrelated even though they are clearly related and would
yield a high value of t12.

All three measures require at least weak time invariance of
the system under study, but one can hardly hope to analyze a
system if that constraint is not satisfied.

It is important that the time increment be appropriate-small
compared to the time constants of subsystem interactions but
large enough to allow the variables a fair chance of changing
values from one observation to the next. Too small an increment
may result in entropies and therefore transmissions which are so
small as to be statistically unreliable; too large an increment
may result in insufficient data on the interactions of quickly
changing variables. Within the acceptable range of increments,
different subsystem groupings may appear with different choices
of the increment. This is not necessarily a disadvantage of the
technique; rather, it is useful information for the analysis of the
system.
One danger in using tij as a measure of intervariable relation

is that it measures only pairwise dependence and would fail if,
for instance, Xk' were strongly dependent upon Xi,Xj ) but only
weakly upon Xi and Xj individually. This situation is possible
but presumably uncommon; if suspected, it can be looked into
by calculating all the normalized transmissions tij,k defined by

_ T((Xi,Xj>: Xk')tEijk - H(Xk')

(and so forth for higher ordered dependencies if need be).
Since the techniques for decomposition and verification depend

on relative rather than absolute values of transmissions, the units
in which H and T are expressed need not be the conventional
bits; thus logs to base 10 or base e may be used in (1) without
affecting the results.
H and T as calculated from a finite number of observations

tend to be biased estimates of the "true" entropies and trans-
missions when these exist by virtue of stable probabilities; H
tends to be an underestimate and T an overestimate [2]. If the
amount of data is too small, they and the technique using them
naturally become statistically unreliable. In a discussion of the
statistical reliability of H and T, Attneave [2] suggests that N,
the number of observations, should at least be as large as df,
the degrees of freedom of the frequency table; if Xi has M,
values and Xj has Mj, reliable calculations of tij would require
N > (Mi I)(M,- 1), for example. Preferably N should be
much larger than that minimum so that each event allowed by
the laws of the system could be expected to occur at least a few
times. To satisfy this requirement it is often convenient to com-
bine categories and set quantum levels of the primary variables
in a manner which keeps all the Mj relatively small and makes
the various values of each variable relatively equiprobable.
At least in the systems to which this decomposition technique

is being applied (mostly ecological systems), this requirement for
large amounts of data seems not to be a serious problem in the
calculation of t and therefore in the production of a grouping of
variables into subsystems. It is a much more severe problem in
the verification portion of the technique since the df of the
frequency tables there (the largest being df = fjK=1 (Mj - 1)2)
can create requirements for unreasonable amounts of data. In
such cases one could be satisfied with verifying that (Tw, + Tj) >>

Tbij, for all i and j, or one could reduce the data requirement by
grouping categories or ranges of the primary variables (thus
reducing the Mj and therefore the largest df), or one could
verify the decomposition by inspection of the dynamics of the
original system.

This technique lays no claim to infallibility, after all, and it is
best viewed as an analytical tool allowing the observer to interact
with the data, directing his attention to subsystems which he
could then analyze in more detail. It is a tool to be used, like all
others, with discretion and with an understanding of its limita-
tions. Properly used, it can be a valuable aid to the understanding
of complex systems.
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A Stopping Rule for Trainable One-Dimensional Threshold
Learning

J. SKLANSKY AND H. R. RAMANUJAM

Abstract-A stopping rule is developed for a class of threshold learning
processes (TLP's) that includes the training procedures occurring in
certain pattern classifiers, psycho-physical and neural models of per-
ception, and in stochastic approximation. The present correspondence is
restricted to one-dimensional pattern spaces. Of the published work on
stopping rules, all but Farrell [1] assume that the sequence of observations
are independent and identically distributed. The TLP model discussed
here gives rise to sequential samples from dependent nonidentical
distributions. The stopping rule presented is a result of the technique
developed here for obtaining a bounded length confidence interval for a
parameter which varies from trial to trial in these distributions. Training
is stopped when the interval falls within prespecified limits, thereby
assuring a specified performance at any desired confidence level. The
rule is illustrated by a numerical example. In the example, both variable
and small fixed increment training are considered. An expression is
also given for the limit to which the probability of acquiring the stopping
criterion converges in probability.

I. INTRODUCTION

We consider here a simple but nontrivial model of learning
with a teacher, called the threshold learning process (TLP) [2].
The TLP is a trainable pattern recognizer or signal detector that
undergoes a training phase followed by a working phase. It
exhibits important features of learning, is representative of some
actual natural and artificial learning systems, and can be easily
simulated on the digital computer.
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