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n
i5 = n6 + 5n' + -524 1

i==1

n
E -=17 + n6 + jn5- 6n3 + F2n.

i= 1

These expressions agree with those appearing in handbooks. The fact
that a simple computer program can generate this sequence of expres-
sions yields programming simplification when evaluating , p for
all values ofp from 1 to N. Instead of having to program each expres-
sion, a simple loop which generates the successive expressions can be
used to perform the evaluations.

Comments on "An Extension to Gradient Matrices"

ROBERT G. RAINS

In the above correspondence,' one of the matrix differentials listed
by Vetter is

dA,(Y) =
tr {adj (AiI - Y) dY}

(1)tr {adj (A,I - Y)}
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TABLE I

Com-
pile
Time
(s)

5 x 5, Real eigen-
values
[12]

5 x 5, Complex
eigenvalues

12 x 12, Complex
eigenvalues

[131
25 x 25, Complex

eigenvalues
[14]

Execution
Time
(s)

a 1.37 0.49

b 2.30 0.46
a 1.37 0.53

Object
Code
(byte)

Array
Area
(byte)

Total
Core
(byte)

15 808 3144 18 952

35 384 2536 37 920
15 808 3144 18 952

b 2.30 0.53 35 384 2536 37 920
a 1.37 5.21 15 808 24 136 39 944

b 2.30 4.09 35 384 12 696 48 080
a 1.37 3.13 min 15 808 167 144 182 952

b 2.30 39.72 35 384 52 376 87 760

a obtained using the Leverrier algorithm.
b-obtained using eigenvectors.
[.]-source of test matrices; incrementals were

percent on nonzero entries of the matrices.
chosen as + 10

It should be noted that if the eigenvalues of Y are distinct, then
Jacobi's sensitivity formula

V.T dYu,dAi(Y) = T
Vi Ui

(2)

where Ai is an eigenvalue of Y, ui is the corresponding eigenvector of
Y, and vi is the corresponding eigenvector of YT, is generally a more
efficient formula for eigenvalue sensitivity. For a derivation of (2) and
some examples of its usefulness, the reader is referred to [1]-[3].

Manuscript received June 28, 1971.
The author is with the School of Engineering, University of California, Irvine,

Calif. 92664.

Reply2 by William J. Vetter 3

Equation (1) of Rains was used in the original correspondence'
primarily to exemplify some gradient matrix results. Mr. Rains asserts
that the alternate expression for eigenvalue incrementals, his equation
(2), is generally more efficient for computation than (1), but he does not
support his claim with references to comparisons. In order to make a
comparison, both expressions have been used for some sample
computations.

Equation (1) was evaluated by use of Leverrier's algorithm (e.g.,
[1], [4]-[6]), roots of the characteristic polynomial so obtained as
part of the routine being evaluated by a library subroutine which uses
successive quadratic factorization by Bairstow iteration [7].

Equation (2) was evaluated by use of a standard eigenvalue-eigen-
vector subroutine which involves element scaling and a similarity
transformation to upper Hessenberg form [8]. The matrix of left
eigenvectors was obtained as the transposed inverse of the matrix of
right eigenvectors.
The pertinent comparisons, for programming in WATFIV, double

precision, and execution on an IBM 360/75 are given in Table I. Use
of Fortran G/H would decrease execution time and core requirements,
with an attendant increase in compiler time. The results in the table
suggest that for matrices of order to about 12, the superiority of either
method is at best marginal, and that additional criteria, such as error
effects and success on ill-conditioned matrices, should be considered
in a comparison. For matrices of large dimensions, the eigenvector
approach is indeed superior, as suggested by Mr. Rains.

Additional pertinent references to the eigenvalue incremental prob-
lem are [6]-[11].

I W. J. Vetter, IEEE Trans. Syst. Man Cybern. (Corresp.), vol. SMC-1, pp. 184-
186, April 1971.

2 Manuscript received November 1, 1971.
3 The author is with the Faculty of Engineering and Applied Science, Memorial

University of Newfoundland, St. John's, Nfld., Canada.
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A Two-Level System of Stochastic Automata for
Periodic Random Environments

KUMPATI S. NARENDRA AND R. VISWANATHAN

Abstract-A class of nonstationary environments with unknown but
periodically changing probabilistic characteristics is considered. It is pro-
posed to optimize the performance in an environment from this class by
using a two-level system of variable-structure stochastic automata. The
first level estimates the unknown period, while the second level operates
suitably in the environment for one cycle, assuming that this estimate is
the true period of the environment. The average output of the environ-
ment in this cycle is used as the input to the first level to determine the
next estimate of the period. The optimal performance of this two-level
system of automata in periodic random environments is demonstrated
through computer simulations.

Manuscript received July 26, 1971; revised November 5, 1971. This work was sup-
ported by the NSF under Grant GK-20580.
The authors are with the Becton Center, Yale University, New Haven, Conn.
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Penalty Probability Set
{c in),in,2,3, ,r}

. NONSTATIONARY
RANDOM ENVIRONMENT

State Probability Set
{pj (p I) =1,2,30,*,r}

lOutput or action AUTOMATON Input
a(n) c0a,a2s' 'Par) (SAVS) x(n) e{o,

Fig. 1. Automaton-environment feedback configuration.

I. INTRODUCTION
In this correspondence we consider a two-level system of variable-

structure stochastic automata for optimization of performance in a
specific class of nonstationary environments, namely, those whose
probabilistic characteristics change in time according to a periodic law
with unknown period. The first level makes a decision on the value of
this unknown period, and the second level accordingly arranges itself
to operate in the random medium for one cycle. The average output
of the environment in this cycle gives, in the expected sense, the
relative worth of the decision made by the first level and is therefore
used as the input to the first level to make the next decision on the
value of the period.
The problem of Automata functioning in stationary random en-

vironments has been considered very extensively in the past [1]-[9].
However, only a few authors concerned themselves with nonstationary
environments [1], [10], [11]. The pioneering work of Tsetlin [1] in this
area dealt with the performance of deterministic automata in random
media whose probabilistic characteristics vary in accordance with a
Markov chain. He established the existence of an optimal memory
capacity (i.e., number of internal states) for the automaton. The per-
formance of variable-structure stochastic automata in such non-

stationary environments was investigated by Varshavskii and
Vorontsova through computer simulations [2]. Recently, Varshavskii
et al. [10] considered the behavior of deterministic automata in
periodic random environments. Here this investigation is extended to
the case of variable-structure stochastic automata.

11. PROBLEM STATEMENT: A TWO-LEVEL SYSTEM OF AUTOMATA
The problem that is considered here can be simply stated as follows.

A nonstationary random environment with periodically changing (in
time) probabilistic characteristics is given. The actual value of the
period is unknown a priori, but its upper limit (maximum value) is
given. The input set of the environment is finite. It is desired to de-
termine that sequence of input values which minimizes the expected
value of the average response of the environment over one period.

It is proposed to design a two-level system of variable-structure
stochastic automata in the feedback path across the environment (see
Fig. 1). The first level estimates the unknown period, while the second
level operates suitably assuming that this estimate is the true period of
the environment.

III. SYSTEM DESCRIPTION
Fig. 1 depicts a closed-loop structure consisting of a stochastic

automaton with a variable structure (SAVS) and a nonstationary
random environment. The automaton at any time instant n performs
an action al, i E {1,2,* ,r}, governed by the probability set {pl(n),* .
p,(n)}. The environment in turn responds with a penalty (x = 1) with
probability cl(n) and a nonpenalty (x = 0) with probability I - c,(n).
The environment is said to be periodic if the penalty probabilities
ci(.), i = 1,2,. *,r, are periodic functions of time. For simplicity, it is
assumed that the automaton has only two actions (i.e., r = 2) and
c,(.), i = 1,2, are periodic piecewise-constant functions. Let c"1,
i= 1,2, denote penalty probability at time n for the action a~. Thus

the environment is completely characterized by the penalty probability
set {CI1,C12,C21Ic22, * *,CT1,CT2}, where T is the period of the functions

cl(.), i = 1,2. (As we have assumed that the environment operates in
discrete time, the period T is necessarily an integer.) The expected
output of the environment over one period M(n) is defined as

1 n+T-1 2
T- EPi(k)CkiT k=n i= 1

(1)

where the overbar refers to expected value and p1(k) is the probability
of performing the action a, at time k. The asymptotic value of M(n)
is denoted as M: M = limrn 0 M(n). Clearly, Mmin < M < Mmax,
where

lT
Mmjn = E min {Cjl,CJ2}

Tj=l
IT

Mmax = T E max {CJi,Cj2}.Tj= I

The automaton is said to be expedient if

I T
M 2T .Y, (C,l + CJ2)

and optimal if M = Mmin. Discussions relating to the significance of
expediency and optimality for the case of stationary environment
apply to the present case also (see [6]-[8]).

It is proposed in this correspondence to obtain optimality using
variable-structure stochastic automata. It is assumed that the penalty
probability set is not known a priori so that the problem becomes
nontrivial. When the period T of the environment is known a priori,
the design of an optimal automaton becomes simple and reduces to
organizing a switching pattern among a group of T automata, each of
which is optimal in a stationary environment, in such a way that each
automaton operates in a stationary environment [10]. When the period
T is unknown but its maximum value Tmax is known a priori, a two-
level structure of automata is developed as follows. The first level
consists of a single automaton having Tmax actions and is responsible
for making a decision about the value of the unknown period, while
the second level comprising Tmax automata is organized in such a way
that if T(n) is the period chosen by the first level, then the first T(n)
automata in the second level start operating in the environment in a
sequential fashion, to be described later, and the arithmetic mean of
the output values of the environment in these T(n) operations is fed
back to the first level as input for the next stage. The optimal perfor-
mance of this two-level system of automata in periodic random
environments is demonstrated through computer simulations.

IV. OPTIMAL SYSTEM OF AUTOMATA
We shall assume that the period T of the environment is unknown.

In the procedure suggested by Varshavskii et al. [10], a composite
automaton consisting of two groups A and B, each having Tmax
deterministic automata, was used. Each automaton Al in group A
has two actions, 0 and 1. At every stage n, the number of automata in
A which select the action I becomes the estimated value of the un-
known period and those automata B1 in group B which correspond to
A, choosing the action 1 are connected I to the environment in sequence.
The connection scheme is realized by means of a pair of rotating com-
mutators [10]. The arithmetic mean of the responses of the environ-
ment in this one cycle is used as the penalty probability for the next
stage for each of the automata in group A. Computer simulation results
were presented to demonstrate the optimal performance of the
composite automaton.

It is proposed in this correspondence to extend this approach to the
case of variable-structure stochastic automata. The reason for doing
this is that deterministic automata are at best only asymptotically
optimal, i.e., optimal performance results only when the number of

1 By "connection" we mean the following: the automaton under consideration
chooses its output in accordance with its current state probability distributions; this
output is then applied to the environment and the resulting response is given to the
automaton as input for updating its state probability distributions. It should be noted
that each automaton uses a prespecified optimal scheme (for details about optimal
schemes refer to [8]) for updating its state probabilities.
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states grow indefinitely large. First, exactly the same design as that
just given, but using optimal variable-structure stochastic automata,
was simulated on the computer. The results were not satisfactory.
However, a modified design that will be described proved successful
in computer simulations.

In the modified design, the group A has only one optimal S-model
automaton having Tmax actions, while the group B still has Tmax
optimal P-model automata. (For the discussion of P and S models,
refer to [6], [9].) At any stage n, the automaton (or group) A estimates
the value of the period by selecting a number T(n) from 1 to Tmax.
Accordingly, the first T(n) automata Bl,B2,.. , BT(n) in group B are
connected to the environment in the following sequence. Assuming
that the environment has a fixed period T(n) and that the group B
was operating in this environment from the beginning, the indices of
the automata that have to be connected sequentially to the environment
are computed. The procedure of connecting the automata in group B
to the environment introduces the necessary synchronization for
processing the past information very effectively, but it requires remem-
bering the total number of time instants tn-1 up to the current stage n.
The index ln of the automaton in B to be connected first to the en-
vironment is given by

In= tn-i - [T(n)] T(n) + l(mod T(n)) (2)

where [x] refers to the largest integer contained in x. Thus the sequence
of automata in B to be connected is

Bj,9B,B+ 1 ~,* ' *BT(n)^B,B25 .* *,BIn-1-
The next value of time instant tn is computed from the following:

tn = tn-I + T(n). (3)
The arithmetic mean of the responses of the environment in the nth
cycle lies in the closed interval [0,1] and is used directly as the input of
the automaton for the (n + 1)th cycle. It is assumed that whenever
the input of an automaton is disconnected, its state (or action) prob-
abilities remain unchanged. Here we refer to such a composite
automaton as a two-level system of automata for obvious reasons.

Updating Schemes
Let each automaton Bi, i = 1,2,.. ,Tmas, use the optimal updating

scheme N(2) [8] and let the automaton A use the e-optimal updating
scheme SLR-I [9].2 Denote the output of the environment by x and
the input of the automaton A by y and that of Bi by Yi. Define

qi(n) = Pr [automaton A chooses the output i at the nth cycle],

i = 1,2,.- -,Tmax (4)

pij(n) = Pr [automaton B1 chooses the action ai at the nth cycle],

i = 1,2,.- ,Tmax, j = 1,2. (5)

It should be noted that each automaton Bi in B gets connected to the
environment at most once in one cycle. This accounts for the argument
in pij() being chosen as the cycle number rather than the time instant.
The updating algorithms for the proposed two-level system are as
follows.
Automaton A:

1 T(n)
y(n) = T X(tn-1 + i) (6)T(n)

qT(n)(n + 1) = qT(n)(n) + a[l -y(n)][l - qT(n)(n)]

qi T(n)(n + 1) = qi(n) - x[l - y(n)]q,(n), i = 1,2,.T,,Tmax (7)

where oc E (0,1).

2 Here the adjectives "optimal" and "e-optimal" refer to the performance of the
corresponding schemes in stationary random environments. The performance of an
e-optimal scheme can, by definition, be brought arbitrarily close to the optimum by a
suitable choice of a parameter in the updating scheme. Thus, for practical purposes
E optimality is adequate.

Automaton B1:

yi(n) = X(tn..I + i), = In, In + 1, -,T(n),1,2,. , In - 1 (8)

where

In = tn-l - [tn. I T(n) + l(mod T(n))

pij(n + 1) = pj(n), i = T(n) + l, -Tmax, j = 1,2. (9)

If the automaton Bi, i = 1,2,. *,T(n), performs the action cij(fj, then

pij(i)(n + 1) = p1j(i)(n) + [IL - (Il + 92)yj(n)]p/(j)(n)
*[1 - ptj(1)(n)] +, i = 1,2, * * ,T(n) (10)

where the parameters I1, ,2, and / satisfy the following inequalities:

32 2

0 < I1 < 22pl

(11)0 < /32 < + (2 #)2

Time Instant tn.
tn = tni- + T(n).

If the automata in group B use the LR-1 scheme [7], [8] for updating
their state probabilities, then in the preceding the only change to be
made occurs in (10). This equation, after incorporating the change, is

pij(1)(n + 1) = pij(i,)(n) + #[1 - yi(n)][l -pij(i)(n)],
i = 1,2,. * T(n) (12)

where ,B E (0,1).
An improvement in the scheme just described is possible. For

choosing an estimate of the true period or its multiple, it is not neces-
sary to consider all the numbers from 1 to Tmax. We can eliminate those
numbers (excluding 1) which are submultiples of numbers in the range
1 to Trnan. For example, if Tmax is 20, then it is sufficient to consider the
11 numbers: 1,11,12,...,20. Using this procedure, the automaton A
has a smaller number of actions, and so the convergence process may
be speeded up. Also the action that corresponds to the true period is
unique. In the original scheme, if T = 7 and Tmax = 20, then the
actions 7 and 14 of the automaton A correspond to the true period,
thus causing a nonunique answer. However, the computer simulations
indicate that the sum of the probabilities of these actions goes to 1 as
the number of cycles grows indefinitely large.

V. COMPUTER SIMULATION RESULTS

The purpose behind the simulation experiments to be described is
to demonstrate the optimal performance in periodic random environ-
ments of the two-level system of variable-structure stochastic automata
proposed in the previous section.
The following two problems are considered for simulation experi-

ments.
Problem 1): T = 2, Tmax = 4. The penalty probabilities of the

environment are

cl= 0.125, c12 = 0.875, c21 = 0.875, c22 = 0.125.

For achieving optimal performance in the environment described in
problem 1), the first action should be performed at all odd instants of
time and the second action at all even instants of time.
Problem 2): T = 7, Tmax = 20. The penalty probabilities of the

environment are

cil = 0.25, ci2 = 0.75, i = 1,2,3

C,i = 0.75, cj2 = 0.25, j = 4,5,6,7.

Thus, for achieving optimal performance in the environment de-
scribed in problem 2), the first action should be chosen as the input for
the first three time instants and the second action for the next four
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time instants, this input pattern being repeated for all subsequent time
instants.

In order to evaluate the performance of a two-level system of autom-
ata, a quantity M1 is defined as follows:

1 2
MI(n) = X~FY Pij(fl)Ckj

T(n) (i,k) ij= 1
(13)

where M1 is the average performance per cycle. If the estimate of the
period T(n) and the state probabilities of the automata in group B,
pij(n), i = 1,2,.* *,T(n), j = 1,2, are fixed at their present values, then
Ml(n) would be the expected value of the average output of the en-
vironment over the first T(n) time instants. In (13) the indices i and k
in the first summation run as follows:

i = I", 1n + 1,- --,T(n),1,2,. , In - 1,

j t=t-I + 1, t - I + 2, - * *t.
where In and t, are as defined in (2) and (3). Since in (13) the prob-
abilities pij(n) are random quantities, we should compute E-{Ml(n)}
rather than Ml(n) itself. In the computer simulations the basic experi-
ment is run several times and the sample mean Ml(n) of the values of
Ml(n) is computed for each n. If a given two-level system of automata
performs in such a way that Ml,(n) approaches Mm.n as n becomes
large, then, clearly, this two-level system performs optimally in the
environment under consideration.

It should be pointed out that optimal updating schemes for variable-
structure stochastic automata operating in stationary environments
are available only for the two-state case [5], [8]. In view of this, the
linear reward-inaction scheme SLR-I, which is e optimal and which is
applicable to any r-state case, is used in the simulations for the first-
level automaton A [8], [12]. a optimality assures that there exist values
of the step-size factor a (see (7)) such that the performance of the
automaton can be made arbitrarily close to the optimum.

Extensive simulation studies were conducted3 and it was found that
the proposed two-level system performed optimally in periodic random
environments. For purposes of illustration, the simulation results for
the two aforementioned problems will be given. Each experiment was
started with the state probabilities of the automaton A being equal to
llTinax and those of the automata B1, i = 1,2,..-.,Tmxa, in group B
being equal to .
For problem 1), the experiment was run 50 times and the average

values KJ(n) were computed. An experiment was terminated either
when the number of cycles exceeded 10 000 or when any state prob-
ability of automaton A as well as that of each automaton in group B
reached 0.98. Two cases of two-level systems were simulated. Each
automaton in group B used the e-optimal LR-I scheme [7], [12] for the
first case and the optimal N(2) scheme [5], [8] for the second case. The
step-size factors used for these schemes (refer to (7), (10), and (12)) are
as follows.
Automaton A:

SLRI a = 0.02.

Automata Bi, i = 1,2,..*,Tmax
Case I

LR-1 ,3= 0.005

Case 2

RP(2)P /1 = 0.3,,2 = 0.2, , = 2.

In both cases all 50 trials of the experiment were successful in the
sense that they ended with automaton A choosing the true period or
its multiple with a probability larger than 0.98 and the appropriate
state probabilities of the automata in group B being larger than 0.98.
The plot of M, versus time is given in Fig. 2 for both cases. In agree-
ment with the relative convergence properties of the LR-I and NR2P
schemes, it is seen from Fig. 2 that the convergence for the second
case is faster in the beginning and becomes slower at the end than the

3 The direct coupled system of IBM 7090 and 7094 in the Yale University Computer
Center, New Haven, Conn., was used for these simulations.
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Fig. 2. Expected per cycle average performance versus time, problem 1.

0 5000 10000 15000 20000 25000 30000 35000

TIME (IN PERIODS OF THE ENVIRONMENT)--
Fig. 3. Expected per cycle average performance versus time, problem 2.

convergence for the first case. As far as the total simulation time is
concerned, the second case consumed a little more than twice the time
taken by the first.
For problem 2), the simulation experiment was run 10 times only,

as the time consumed per experiment was found to be much larger
than that for problem 1). For the same reason, only the case where
the automata in group B use the LR-I scheme was considered. For
successful convergence it was necessary to choose quite small values
for the step-size factors; they are as follows.
Automaton A:

SLR-1: a = 0.003.

Automata Bi, i = 1,2,.* *, Tmax:

LR/1:A = 0.001.

All 10 trials of the experiment were successful and the plot M1 versus
time is given in Fig. 3.

VI. CONCLUSIONS

Problems involving nonstationary environments have not been
satisfactorily treated in the past. This correspondence, extending the
ideas suggested in a previous work, has considered a specific class of
nonstationary environments, namely, periodic random environments,
and investigated the behavior of variable-structure stochastic automata
in such environments.

If the investigation of multilevel systems of stochastic automata
yields some positive results, then the use of stochastic automata in
multimodal search would become a potent tool in many applications.
To this end, a specific two-level system of variable-structure stochastic
automata has been considered. The optimal performance of this two-
level system in unknown periodic random environments with a known
upper limit on its period has been demonstrated through computer
simulations.
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Comments on "Use of Stochastic Automata for Parameter
Self-Optimization with Multimodal Performance

Criteria"

IAN H. WITTEN

Abstract-In the above paper,1 an optimal method of self-optimization
of certain system parameters using noisy binary-valued performance
feedback is extended, without losing optimality, to situations with many-
valued performance feedback. The effect of time-varying feedback mech-
anisms is briefly considered.

In the above paper' Shapiro and Narendra considered the problem
of on-line self-optimization of a set of parameters {a} contained in a
given system, the performance of which was only available in a form
corrupted by noise. Thus measurements g(a,z), where z is a random
quantity, are available, and the aim is to find a value for a which
maximizes I(a) = E[g(a,z)], the expected value of g. They called a
self-optimization algorithm optimal if it eventually chose, with prob-
ability 1, the optimum value for the parameter set, and presented an
optimal self-optimization algorithm for the case where measurements
of the system's performance were limited to the values 0 and 1-a
penalty/nonpenalty situation. It is clearly of interest to extend this
algorithm to systems with more general performance functions, and
although Shapiro and Narendra claim to have accomplished this
without sacrificing optimality (see the appendix'), this correspondence
will show that their extension is not, in fact, optimal, but that such an
optimal extension can be made by introducing an additional random
element. Some comments will also be made on the use of the optimal
algorithm in situations where the performance evaluation function I
varies with time.
The set of parameters {a} is assumed to have r possible values a1.

Restricting attention for the moment to the penalty/nonpenalty situa-
tion, let

Cl = Pr [action al causes a penalty response] = Pr [g(a,,z) = 0].

We assume that the Cl completely characterize the performance evalua-
tion mechanism, so that successive performance measures are statis-
tically independent. The "linear reinforcement scheme" of Shapiro
and Narendra chooses the parameter value al with probability pi and
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updates the pj according to the consequent performance measure g, in
accordance with the following:

1) if g = 0, do not change any pj;
2) if g = 1, then

Pi ypL + 1 - y

Pi ypP, for allj l i

where ai is the ax value last chosen.

Here, y c (0,1) is a constant controlling the rate of adaptation and the
vulnerability of the pj to noise. This self-optimization algorithm is
optimal, as was elegantly shown by Shapiro and Narendra, provided
only that initial values for the pj are chosen in the open interval (0,1).

In order to extend the algorithm to situations where g(aj,z) may
take on any values, Shapiro and Narendra propose storing, for each
ai, the mean value g,* of g(a,,z) observed so far. Then, if a, is chosen
and the consequent performance measure is g, a secondary measure g'
is computed by

1, ifg . g1*
|, otherwise.

This new measure is used as the performance measure in the preceding
algorithm. (The ith mean estimator gi* is, of course, updated by g
using a conventional mean estimation procedure.) Thus this extension
of the algorithm acts as a preprocessor which transforms the many-
valued performance measures g into binary-valued ones g'.

It is possible to produce an example which shows that this extended
self-optimization algorithm is not optimal in the sense described earlier.
Suppose that a has only two possible values, a1 and a2. Let g(a,z)
have the following form:

g(a ,) = 7/1,(7j/15,
2/3,

9(X)=0,

with probability 1/4
with probability 3/4

with probability 3/4
with probability 1/4.

Then the performance evaluation function I(a) = E[g(a,z)] is

I(al) = 0.6 I(a2) = 0.5

and thus an optimal algorithm will eventually choose a, with prob-
ability 1. However, consider the preceding algorithm. Suppose that
the process has been going on long enough for accurate estimations
g* of the mean performance measure to have been made

gl* = 0.6 g2* = 0.5

and these estimates are not significantly changed by future experience
(this can obviously be made more precise using the law of large
numbers). Then

E[g'(a1,z)] = Pr [g'(aj,z) = 1] = Pr [g(a1,z) > gl*] = 1/4

E[g'(a2,z)] = Pr [g'(a2,z) = 1] = Pr [g(a2,z) > g2*] = 3/4.

Thus the binary-valued performance function g' favors the parameter
value a2 instead of the value a, favored by the original function g.
Hence the extended algorithm will converge to the wrong a value.

Consider now the following system for computing a binary-valued
performance measure g' from a many-valued one g. The g' are assumed
to be normalized to lie in the interval [0,1]. (Normalization is easy if
the original g are known to lie within certain limits. We may dispense
with this restriction by observing that the only conditions necessary on
the normalization function are a) monotonicity and b) that the image
of the function is contained in [0,1]. Thus a function such as x -+

e5/(l + ex), which maps the entire real line monotonically into [0,1],
will do.) The new performance measure g is computed by

1, with probability g
t0, with probability 1 - g.
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