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Linear Regression Analysis with Fuzzy Model

HIDEO TANAKA, MEMBER, IEEE, SATORU UEJIMA,
AND KIYOJI ASAI

Abstract-In modeling some systems where human estimation is influen-
tial, we must deal with a fuzzy structure of the system considered. This
structure is represented as a fuzzy linear function whose parameters are
given by fuzzy sets. The fuzzy linear functions are defined by Zadeh's
extension principle. Considering a fuzzy linear function as a model of fuzzy
structure of the system, a fuzzy linear regression analysis is formulated. In
the usual regression model, deviations between the observed values and the
estimated values are supposed to be due to measurement errors. Here, on
the contrary, these deviations are assumed to depend on the indefiniteness
of the system structure. We regard these deviations as the fuzziness of the
parameters of the system. Thus these deviations are reflected in a linear
function with fuzzy parameters. As an example of this problem, the fuzzy
linear model of the price mechanism of prefabricated houses is obtained.
The fuzzy parameter of this model means a possibility distribution. The
estimated values are obtained as fuzzy sets which represent the fuzziness of
the system structure, while the conventional confidential interval is related
to the observation errors. This fuzzy linear regression model might be very
useful for finding a fuzzy structure in an evaluation system.

I. INTRODUCTION

Fuzziness must be considered in systems where human estima-
tion is influential. Since we deal with the phenomenon originated
from a fuzzy structure, a model of such a vague phenomenon
might be represented as a fuzzy system equation which can be
described by the fuzzy functions [I]-[4] defined by Zadeh's
extension principle. The idea that a vague phenomenon should be
identified by a fuzzy function is natural.
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Fig. 1. Fuzzy set of parameter A: A A "approximate a."

In this correspondence, we are concerned with the application
of fuzzy linear function to a regression analysis in a vague
phenomenon. In the usual regression model, deviations between
the observed values and the estimated values are supposed to be
due to observation errors. We assume, on the contrary, that these
deviations depend on the indefiniteness of the system structure.
We regard these deviations as the fuzziness of system parameters.
Thus they are reflected in a fuzzy linear function which repre-
sents a vague phenomenon. As an example of this problem, we
have obtained the fuzzy linear model of a price mechanism of
prefabricated houses. The fuzzy parameter of the linear model
obtained means a possibility distribution which corresponds to
the fuzziness of the system. The fuzzy parameters studied in this
correspondence are restricted to a class of " triangular" member-
ship functions. This fuzzy regression model might be very useful
for finding a fuzzy structure in an evaluation system.

II. Fuzzy FUNCTION WITH Fuzzy PARAMETERS
Let us consider two sets X and Y and a function f(x, a) which

is a mapping from X into Y. If parameters are given by fuzzy sets
A, the function is called a fuzzy function, denoted by f(x, A).
When an x is given, the fuzzy set Y = f(x, A) mapped from the
fuzzy set A can be defined as follows.

Definition 1: The fuzzy function is denoted by

f:X- C(y); Y=f(x,A) (1)
where CY(y) is the set of all fuzzy subsets on Y. The fuzzy set Y is
defined by the membership function

(aly=f(x,a)) * 0

otherwise
(2)

where A is a fuzzy set on the product space of parameters whose
membership function is denoted by tA(a).

Definition 1 is a natural extension of the concept of mapping
sets. Given x, a fuzzy set A is mapped into Y, and its image of A
is given by Definition 1. The fuzzy parameters considered here
are assumed limited to the type of the following fuzzy sets.

Definition 2: Fuzzy parameters are defined by the fuzzy sets as
illustrated in Fig. 1. This fuzzy set can be represented as

LA (a) = miim (aj)]

AA(aaj) i Ca

05

(3)

aI- cj < a < a + c(4)
otherwise

where cj> 0.
The fuzzy parameter of Definition 2 means "approximate a,"

described by the center a and the width c. Hence fuzzy parame-
ters A = (A1,-., A,,) can be denoted in the vector form of

A = {(a, c}, a = (a,..,* aN)t C= (Cl, * ** C ).
(5)
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max [LA-(a),
Ity(y) = (a y =f(x, a))
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TABLE I
INPUT-OUTPUT DATA

Sample Output Inputs
number Y
1 y1 Xi ),I.i

N YN XNl.""XNn

Note that a fuzzy set Ai is defined on the real line R', and A
defined on the vector space R' can be considered a Cartesian
product.
To understand Definitions 1 and 2, consider the following

fuzzy linear function

Y=A1xl ±A2X2 (6)
whereA = ((I, 4), (2, l)}. Givenx = (1, l)t, the fuzzy set Y= (5, 3)
is obtained by these definitions. This example means that "ap-
proximate 1" plus "approximate 4" is "approximate 5". This idea
is generalized to get the following proposition.

Proposition 1: Given fuzzy parameter A = (a, c}, the fuzzy
linear function

Y=Alx1±--+A,,x,=Ax
is obtained as the following membership function:

YA

102-
60- L 22

4 - (Y1,X)
2- F 11 0.5 1'

1. 0
0.5 I1.,-'. -

0 2 4 6 x

Fig. 2. Explanation of fuzzy linear regression model Yi = A0 ± A 1xi; A0
(3,I1),A1 (l,O0.5), h =-0.5.

TABLE II
INPUT-Fuzzy OUTPUT DATA

Sample Fuzzy Output Inputs
number .Y_. x

1 Y1=(y1,e1) x11."IXl

N =(YN eN) xnl '*-*PxNn

Fuzzy output

(7)

X *O0
jLy(y) = YC~l$;all

x = 0, y = 0
x = 0, y =* 0

(8)

where lxi = (Ixli,"-, lx,,l)t and Ity(y) = 0, when ctlxl < ly -
xtal. The proof of this proposition is given in the Appendix.

III. FoRMULATION OF THE Fuzzy LiNEAR REGRESSION
MODEL

A regression problem has two basic aspects to be dealt with: 1)
what is the most appropriate mathematical model, and 2) how do
we determine the best fitting model for the data shown in Table
I. Here y, is called an output or an observation for the i th sample,
and x is called ajth input or ajth independent variable for the

th sample.
In this correspondence we confine ourselves to the linear

regression problem. Letting the linear regression model be y =

atx, the deviation between the observed value and the estimated
value yi* = atxi

is generally regarded as the observation error c, which is a
random variable with zero mean. On the contrary, we assume
that the deviations depend on the fuzziness of the system struc-
ture. In other words, the deviations are closely related to fuzzi-
ness of system parameters rather than observation errors.
With the above view, we consider a fuzzy linear function

Y=A,x, ±---+A,,xl=Ax (10)

1

Fig. 3. Fuzzy output.

For the nonfuzzy input-output data such as those in Table I,
we have already formulated the fuzzy linear regression model [5].
We deal with fuzzy output data denoted by Yi = (y,, e,), where y,
is a center and ei is a width. The input-output data are shown in
Table II and Fig. 3. The membership function of Y, is given by

(11)

TIo formulate a fuzzy linear regression model, the follo'wing are
assumed to hold.

1) The data can be represented by a fuzzy linear model:
Y* =A*xi±...±--+A*xi, AA*x, (12)

where the type of fuzzy parameter Ai is given by Definition 2.
Given xi, Y,* can be obtained from Proposition I as

jyi - x'ajljLy*(y)l=I
Ct xiX,

(13)

2) The degree of the fitting of the estimated fuzzy linear model
Y = A *xi to the given data Yi = (y,, ei) is measured by the

following index -i, which maximizes h subject to Y/'hc i*h where
Yh' = (y[yjt(y)>h)

where A, is a fuzzy set defined by Definition 2. When we have
nonfuzzy data in Table I, the problem of the fuzzy linear regres-
sion model is to determine fuzzy parameters A * such that the
fuzzy output set Yj* = A *x contains y, with more than h degree
(Fig. 2). The dispersion of data represents the fuzziness of the
phenomenon underlying a model. We consider our data as
input-output relations whose vagueness is derived from the
existence of fuzzy parameters. In our model, the deviations
among data are explained as the vagueness of the system struc-
ture expressed by fuzzy parameters.

y*h = {yI,iy*(y) ., h) (14)
which are h-level sets. This index h, is illustrated in Fig. 4. The
degree of the fitting of the fuzzy linear model to all data YI --

YN is defined by mini [h,-J.
3) The vagueness of th fuzzy linear model is defined by

(15)
'Thle problem is explained as obtaining fuzzy parameters A ~'

which minimize J subject to h,> H for all i, where H is chose'n
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c j ijI
Fig. 4. Degree of fitting of Yj* to given fuzzy data Yi.

as the degree of the fitting of the fuzzy linear model by the
decisionmaker. The hi can be obtained as

h =l _ IYi- Xi|(16hiI

ICjlxijl - ei
(6

This is derived from the following relation in Fig. 4:

1: (1-hi) = Ecjlxijl) k (17)

1 I~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1

where

k = 1y1 - xtal + ei(l -hi). (18)

More specifically, our problem is to find out the fuzzy parame-
ters A * = (ai, ci) which are the solution of the following linear

programming problem:

minJ cl + *- +c,
a, c

subject to c > 0 and

atxj + (1 - H)Zcjlxijl > yi + (1 -H)ei

-atx + (1 - H)ZcjIxijl > -yi +( -H)ei,

i =1,** N. ( 19)
We can obtain the best fitting model for the given data by

solving the conventional linear programming problem (19). In
general, the number of constraints 2N is much larger than the
number of variables n. Therefore, solving the dual problem of
(19) is easy compared with solving the primal problem (19). Since
the variables a are not necessarily nonnegative, the new variables
a' > 0 are introduced to have

a = a' + d, (20)

where dt = (d,, d) and d is assumed to be a sufficiently small
negative number so that the variables a' are always positive.

Using /B = (f1, -., fIN)t and D = (D1,. , DN)t as the dual
variables, the dual problem of (19) can be written in the form of

N

maxJ = E pi Yi + (1 - H)ej
D i= I

N

-E Di Y1

subject to,B > 0, D > and
N

(1 -H) ZE pi1xi±+
i= I

N

L fixij
i=

N

E Dixij < 0,
i= 1

d E xij
j=l

n

-(1 - H)ej -d Ex]
j=,

N

(1 - H) E D~ilxijl 1
i=-

j= 1,...,n.

TABLE III
INPUT-OUTPUT DATA CONCERNING HOUSE PRICES

NO. Y(y,e) 0 Xl X2 X3 X4 X5
1 (6060 550) 1 1 38.09 36.43 5 1
2 (7100 50) 1 1 62.10 26.50 6 1
3 (8080 400) 1 1 63.76 44.71 7 1
4 (8260 150) 1 1 74.52 38.09 8 1
5 (8650 , 750) 1 1 75.38 41.40 7 2
6 (8520 , 450) 1 2 52.99 26.49 4 2
7 (9170 , 700) 1 2 62.93 26.49 5 2
8 (10310 , 200) 1 2 72.04 33.12 6 3
9 (10920 , 600) 1 2 76.12 43.06 7 2

10 (12030 , 100) 1 2 90.26 42.64 7 2
11 (13940 , 350) 1 3 85.70 31.33 6 3
12 (14200 , 250) 1 3 95.27 27.64 6 3
13 (16010 , 300) 1 3 105.98 27.64 6 3
14 (16320 , 500) 1 3 79.25 66.81 6 3
15 (16990 , 650) 1 3 120.50 32.25 6 3

Yi: ith fuzzy house price (1000 yen). xo: constant. xl: rank of matenal.
x2: first floor space (mi2). X3: second floor space (m2). x4: number of
rooms. x5: number of Japanese-style rooms.

TABLE IV
FuzzY PARAMETERA * (H = 0.5)

Fuzzy Parameter A A* A A A0 A1 A-2 A3 A4 A

Center ai 11040 1810 2140 870 -540 -180

Width ai 820 0 370 0 0 0

Since this dual problem diminishes the number of constraints
because of N > n, solving (21) is more efficient than solving (19).

IV. APPLICATION AND DISCUSSION
This fuzzy linear regression model is applied to the price

mechanism of prefabricated houses. The input-output data shown
in Table III, except ei, are obtained from the catalogue issued by
some corporation. The values of ei are assumed by the authors. In
the column xl of Table III, three ranks of material are indicated:
low grade (1), medium grade (2), and high grade (3). From these
data, we decide the fuzzy linear system Y = A0 + A IxI + +
A 5X5, which is the best fitting model for the data given.

The results of fuzzy parameters A are given in Table IV, where
H = 0.5. ai denotes a center of a fuzzy parameter, and ci shows
fuzziness of its parameter. The calculations to obtain the fuzzy
parameters A have been done by transforming the original data
into deviations from the mean of each of the variables x except
for fuzzy output data Y. The estimated values Y2, Y4, - , Y,*4 are
shown in Fig. 5. For the example of number ten, the estimated
value is obtained as Y-*o= (12464,1056) while the given data is
Ylo = (12030,100). Note that the solution satisfies the relation
yh C y*h with H = 0.5. The following results are reached.

1) The fuzzy mean value of house prices can be explained by
AO = (11040,820).

2) The vagueness of house price can be represented as the
fuzziness of the constant parameter A 0 and first floor space A2.
By this fuzziness of parameters the dispersion of the given data
can be explained. In this case, the fuzziness of A is J = 1190.

3) The fact that A 4 and A 5 are negative, depends on the strong
correlations between variables X4 and X5. In the case of a fixed
floor space, the larger the number of rooms, the lower the price,
since the small rooms diminish the price.

Last, let us describe the characteristics of the fuzzy linear
regression model compared with the conventional one. Since the
estimated price of a new model can be obtained as a fuzzy set,
the decisionmaker can choose a price out of the estimated fuzzy
set at his disposal. As regards the width of fuzzy set, it is evident
from Fig. 2 that the larger the x, the larger the width of
Y = A 0 + A l x. Letting Y be a fuzzy price, a high price has more
fuzziness than a low price. For example, suppose that the fuzzi-
ness is about ten percent of the price. Then the price of 100 yen
has the fuzziness of approximately 10 yen, and 10 000 yen has the
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Fig. 5. Estimation Y,* obtained from fuzzy regression model, i = 2,4, , 14.

fuzziness of approximately 100 yen. The fuzzy linear model can
explain the above fuzziness. This is an essential point of depar-
ture from the conventional regression model. The confidential
interval in the conventional regression model seems to estimate
the upper and lower limits of the observation errors.

Fig. 6. Explanation for calculating IT(t) (fuzzy set T).

V. CONCLUDING REMARKS

We have applied the fuzzy linear function to the linear regres-
sion model and established a method of system representation for
a vague phenomenon. As shown in the example, the vagueness of
the evaluation system is represented by the fuzzy linear function.
If nonfuzzy output data are given, the same procedure is availa-
ble with ei = 0. The fuzzy function with fuzzy parameters might
be very widely applied in various fields, as described in [6]-[9].
Although only one type of fuzzy sets is discussed here, another
type can be treated by the same approach.

APPENDIX

Proof of Proposition 1

We prove Proposition 1 in the case of x * 0, since the other
cases are self-evident. It follows from (I)-(4) that

I~~ai a~il1
=l(y max mi~nr [I JA11T(t)]

t y-t+ C/
a3

j = 3aajxj
.an/

Hence (22) can be rewritten in the form

,r(y) = max
(t'I y=t'+
a4

Va,

F-'=4ajxj)

aj aj1

{a3

*(1 _Ia3 a3l)A
C3

2

tt- 1:a1xi

2

|t,E a/iX/|cj=lx I --
(26)

Applying just the same operation to (26), we have

(228

where

11T(t) = max I a,

[(1 ) A(l
2 a)]

{al, a2lt=alxl+a2X2) Cl C2

ax [I(
1lax, + a2X2 - tl A I

cllxll t
a2 ]a2

(23)

The fuzzy set T is shown in Fig. 6 where it is clear that
ILT(t) = h. It follows from Fig. 6 that

l:(lh)( =c- 1h I1 (It -ax- a2x21 _ C2(l -h))

(24)

Then we have

2

t - £ a1x

h= - 2 (25)
-E Cjlxl

j=l

) Yr(y) = max
t' y=t'+

F-'j=4ajxj
Va,

CYj-aujl)
Cj

A

3

tt EajxjlAa1x1l
2

j=l

(27)
Repeating this procedure, we have

/Ly(y) = 1

n

y >3a1,x1
j=I

n

j=l

(28)
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A Neural Network Model of Pain Mechanisms:
Functional Properties of the Network Cells

Providing the Power Law

HARUYUKI MINAMITANI

Abstract-Model simulation of a neural network providing the conduc-
tion mechanisms of pain and tactile sensations was undertaken, and the
functional relations between neural activities of the network cells and
stimulus strength applied on peripheral receptive fields were obtained. The
functional relations of thalamocortical cells fall close to a straight line
indicating a simple power law. The exponents of the power function are
more than three for pain perceptive neural cells, while those for tactile
sensation are about 1.5, which agrees well with the counterpart physiologi-
cal data. The results are instructive for covering the gap between physio-
logically and psychophysically investigated somatosensory functions.

I. INTRODUCTION

Studies elucidating somatosensory mechanisms are undertaken
by two fundamental means. The electrophysiological method is
the proper way to investigate neural receptive fields and neural
pathways of somatic sensations such as touch and pain. On the
other hand, the psychophysical method has served to obtain the
subjective functions between any applied stimulus and the conse-
quent sensibility perceived in human subjects, which present no
inner mechanism of neural connections. Boundary studies cover-
ing the gap between physiological and psychological observations
have not been largely reported, except to correlate the psycho-
physical power law with primary afferent or central neural activi-
ties [1]-[7]. Although some models and theories concerned with
pain and tactile sensations have been proposed in conformity
with the physiological aspects, none of them deal with the
mathematical analysis and the synthesis as well. Model simula-
tion may be expected to establish quantitatively the interrelation
of both studies, viz., the numerical description connecting the
psychophysical sensory mechanisms with the counterpart physio-
logical evidence.

In a previous paper [8], a neural network model of pain
mechanisms was proposed, and the model simulation was carried
out to investigate inner mechanisms essential for pain and tactile
sensations. The modeling was based on various assumptions
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drawn from the results of physiological and anatomical studies in
the literature [8]. The overall simplified model was constructed of
18 neural units, three afferent neural fibers (A:, As, and C
fibers), six spinal cord cells, three brainstem cells, three thalamic
cells, and three cortical cells, the response activities of which are
provided by solving 18 simultaneous differential equations with
two sets of linear differential equations for the adaptation effect
of peripheral afferents. Thalamic ventral posterolateral nuclei
(VPL) on the dorsal column-medial lemniscus tract (DCLT),
being organized as a large myelinated AA fiber and rapid tempo
system, serves tactile sensation and terminates the axons in the
first and second somatic sensory area (SI, SII) of the cerebral
cortex. On the other hand, the extralemniscal reticular tract
(ELRT) system plays an essential role in protopathic sensory
modalities such as pain and thermal sensation, the evoked
responses of which are transmitted by small As and C fibers. The
centromedian parafascicular complex (CM-Pf) on ELRT serves
the perception of slow burning pain and projects directly as well
as indirectly on the associated area with SI and SII in the
celebral cortex (H). Additionally, the thalamic posterior nuclei
group (PO) on the neospinothalamic tract (NSTT) plays an
important role in pain as well as mechano-perception, of which
information are mainly transmitted by small myelinated A,& fibers.
PO projects the information on the somatic sensory area of
celebral cortex, probably on Sl1 and partly on SI. The temporal
modality of the neural responses mimics the somatic sensation as
follows.

Fast elevation of the initial bursts of VPL and PO cells are
elicited by the AA fibers' facilitation but are decreased drastically
by the adaptation of A,B fibers, inhibition from the adjacent
neural cells, and the negative feedback from the upper brain. This
modality at the initial phase (- 50 ms) seems to be the warning
signal for the noxious stimuli succeeding the rapid reflex
withdrawal movement. After the initial phase, activities of VPL
and PO cells are again facilitated by the succeeding impulses
transmitted on AA and As fibers. Particularly, the firing rate of
PO cells increases up to the second maximum at about 75 ms,
which suggests that the fast stinging pain may be evoked in PO
cells and projected on the celebral cortex. When low stimulus
intensity is applied, the firing rate of PO cells does not increase,
and no fast pain but only tactile sensation occurs at this second
phase (50-250 ms). If stimulus intensity is considerably high,
CM-Pf cells are also facilitated by the transmitted impulses of C
fibers at the third phase (250 ms -) and the sensation of slow
burning pain occurs and is projected on the cortical H and SII
cells. Therefore, pain sensibility can be estimated by the firing
activities of PO and CM-Pf cells as well as cortical SII and H
cells, while tactile sensibility is estimated by those of VPL and
cortical SI cells.

Corresponding to a previous paper [8], the response character-
istics of the neural cells to stimulus intensity and the frequency of
repetitive pulse sequences are investigated. Some stimulus-
response relations characterized by the Stevens' power law are
obtained from the specific features of temporal modality and
compared with those of physiological data. As can be seen, this
model simulation provides valuable information for elucidating
the central neural mechanisms for sensory magnitude estimation,
which may in turn present the analytical cue to discussing the
physiological correlates of psychophysical functions. Computer
simulation of the overall model has been made on a HITAC
8700/8800 digital computer (Hitachi Corp.), using the fourth-
order Runge-Kutta method to solve the nonlinear differential
neural equations. The simulation program has been written in
Fortran. Parameter determination has been carried out on a
trial-and-error basis by using the iterative method of model
simulation. The precise procedure and the parameters have been
presented in [8].
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