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Fig. 7. Conditional information of sentences x C L(GE) given independent
sentences 4 = ahab and 27 = hbahau.

tional information relative to these pairs to obtain an internal
grouping of the sentences of the given grammar.

VI. SUMMARY AND CONCLUSIONS
In this correspondence we have considered the complexity of

sentences with emphasis on the role that conditioning plays in
definitions of complexity. Based on this definition we have shown
that it is possible to construct marginal, conditional, and mutual
syntactical information measures which satisfy some basic prop-
erties that makes them useful in applications. It has been demon-
strated that the notions of complexity and information can be
combined to yield a consistent description of the structure of
sentences. Also, since the concept of universality was not neces-
sary the results obtained are easier to apply than the general
theory of complexity permits.
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Multispectral Texture

AZRIEL ROSENFELD, FL-I LOW, IEEI, CHENG-YE WANG,
AND ANGELA Y. WU

Abstract-Textures in single-band images are often characterized by
statistics of the joint distributions of pairs of gray levels for pairs of pixels
in given relative positions, or by statistics of absolute gray level differences
for such pairs of pixels. Joint distributions of pairs of spectral vectors in
multiband images are cunibersomile-since for k bands they are 2k-dimen-
sional-but absolute difference distributions are less so, e.g., for two bands
they are only two-dimensional. The possibility is discussed of using statis-
tics of absolute difference distributions for characterizing textures in
multiband images, with emphasis on the two-band case.

I. INTRODUCTION

Many different types of features have been used for texture
analysis and classification; see [1] for a recent review. Essentially
all of this work has dealt with single-band images rather than
with color or multispectral images. When texture analysis is used
for multispectral imagery, it is applied to a single band (possibly
a composite of the original bands, or an "eigenband" resulting
from a Karhunen-Loeve transformation), and if desired, the
results are treated as an additional "texture band"; but texture
features are not commonly, if ever, measured for multiband data
directly. The purpose of this correspondence is to introduce a
class of texture features that are defined for multiband imagery
and that are computationally quite tractable in the two-band
case.
The particular class of texture features which we will generalize

to the multiband case are statistical features derived from pairs of
pixels in given relative positions. For single-band images, the
joint distribution of the gray levels of such a pair of pixels can be
represented by a "co-occurrence matrix" which tabulates how
often each possible pair of gray levels occurs in the image in the
given relative position, and we can define texture features by
computing various statistics from such matrices (e.g., moment of
inertia about the main diagonal, entropy, etc). This concept
generalizes immediately to multi-band images but is computa-
tionally cumbersome; even in the two-band case, the joint distri-
bution of pairs of two-vectors in a given relative position requires
a four-dimensional matrix for its representation, which is expen-
sive in storage space unless the values in the bands are very
coarsely quantized. (It might be possible, in principle, to use

sparse matrix techniques to handle high-dimensional co-occur-

rence matrices; but we shall not pursue this possibility here.)
An alternative to using joint distributions of pairs of pixel gray

levels in given relative positions is to use only the distribution of
absolute differences of such pairs of gray levels. It was seen in [2]
that for some texture classification tasks, features based on such
distributions are just as effective as features derived from joint
gray level distributions. In the single-band case, an absolute
difference distribution is represented by a (one-dimensional)
histogram of the absolute differences, and we can define texture
features by computing various statistics from such histograms,
e.g., their means, variances, entropies, etc. In the two-band case,
it would be represented by a two-dimensional scatter plot show-
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ing how often each (difference in band1, difference in band 2)
pair occurs for pixel pairs in the given relative position. Thus for
smallnumbers of bands (two, especially), texture analysis based
on absolute difference statistics is computationally quite tracta-
ble.

Section II of this correspondence defines a class of multiband
texture features based on absolute difference statistics, and Sec-
tionIII gives examples of results obtained when these features
are computed for some simple two-band textures.

II. FEATURES

A. Single-BandFeatures
Let us first briefly review the definitions of co-occurrence

matrices and absolute difference histograms for single-band
images. Let 6- (Ax, Ay) be a relative position vector, and let
the gray levels of the given imagesbe 0,1, -, m- 1. The co-oc-
currenice matrix Ms is an mX m matrix whose (i, j)th element is
the number of pairs of pixels in relative position 6 that have the
pair of gray levels(i, J). For a uniformly textured image having a
given gray level probability density, concentration of high values
near the main diagonal of Ms suggests that the texture is com-
posed of uniform patches that are large relative to1I6 (implying
that two gray levels 6 apart tend to be similar). Thus the moment
of inertia of Ms about its main diagonal is a measure of the
"busyness" of the texture relative to1I1 This is one simple
example of how statistics computed from Ms, for various 6's, can
provide information about the nature of the texture.

Similarly, the difference histogram D6 is anm-vector whose k th
element is the number of pairs of pixels in relative position 6 that
have absolute gray level difference k. Note that if we sumMs
along lines parallel to its main diagonal, we obtain a difference
histogram, but for signed rather than absolute differences; to
obtainDa, we need only make Ms symmetric by adding pairs of
elements symmetric with respect to the main diagonal, and then
summing the upper triangle of Ms along lines parallel to the
diagonal. Thus the moment of inertia of D6 around the origin
(k= 0) is the same as the moment of inertia of M6 around the
main diagonal, indicating that Ds too can be used as a source of
texture features.

Co-occurrence matrices and difference histograms are com-
monly computed for images whose gray level probability densi-
ties have been standardized, e.g., by histogram flattening. If this
were not done, contrast effects would be confused with coarse-
ness effects; if we increase the contrast of an image, its Ms entries
are spread outward from the main diagonal and its Da entries
from the origin.

B. Multiband Features
The values of the pixels in a b-band image are b-vectors of the

form (Z,, ., Z,,), 0< Z,<m - 1, I<h < b. Thus the b-band
analog of a co-occurrence matrix Ms is a 2b-dimensional m X m
... X>m array whose ('i,, - .,i2,)th element is the number of
pairs of pixels in relative position 6 that have the pair of b-vectors
((11 ., i,, ), (i,, j, ,i2,,)) as values. Evidently, even for small
values of m and b, such an Ma is cumbersome to work with, e.g.,
for m = 8 and b= 2, it has m2' = 84 = 212 = 4096 elements,
and this number grows rapidly with both m and b.
The situation is somewhat more manageable if we work with

difference histograms rather than co-occurrence matrices. A b-
band difference histogram Ds is a b-dimensional m X m ... Xm
array whose (k,,- ,k,,)th element is the number of pairs of
pixels in relative position 6 that have the b-vector of absolute
differences (k.,,-- ,k,,) in bands l, - , b, respectively. The size of
Ds for small values of b is quite manageable; e.g., for m = 8 and
b = 2 it has only mi = 64 elements.
Some insight into the possible forms of multiband scatter plots

(again, for simplicity we assume b 2) can be obtained by
consi'dering two simple hypothetical examples.

I) Suppose that the texture is composed of small patches on a
background, where the patches and the background have a
greater reflectivity difference in one band than in the other.
For a given 6, smaller than the average patch size or
spacing, the difference histogram in each band is a mixture
of within-patch and within-background differences (pre-
sumably near 0) and patch-background differences (larger).
In this case, the two-dimensional Ds scatter plot should
consist of a cluster near (0,0) and a cluster near (d,,d,),
whered, and d, are the expected patch-background dif-
ferences in the two bands.

2) Suppose that the texture arises from an undulating surface
in which slope differences give rise to intensity differences
in the image, and the change in intensity as a function of
slope is different for the two bands. A given displacement6
corresponds to a given expected slope difference, hence to a
pair of expected intensity differences in the two bands.

Note that in both of these cases, the differences in the two
bands are quite correlated.
What types of statistics would it be useful to measure for a

b-band Ms or D6? (We shall assume, for convenience, that the
probability densities of values have been standardized, e.g., by
histogram flattening of each band.) Evidently, the spread of
values relative to the main diagonal or origin is still relevant, but
we should be able to analyze it in greater detail, since it has more
degrees of freedom. For simplicity, let us consider onlyDa and
only the two-band case. In this case Dj is a two-dimensional
array whose (i,j) element is the number of pairs of pixels in
relative position S that have absolute difference i in the firstband
andj in the second band. We can make the following qualitative
observations about such an array.

a) The spread of values away from the origin is a measure of
texture "busyness," since high values far from the origin
imply the frequent occurrence of high absolute differences
in one or both bands.

b) The spread of values away from the main diagonal (as
measured, e.g., by the moment of inertia of Ds about the
diagonal) is a measure of relative texture "busyness" in the
two bands; high values far from the diagonal imply many
cases where one absolute difference is quite different from
the other.

c) The asymmetry of the values relative to the main diagonal
(as measured, e.g., by the slope of the principal axis of D,
relative to the diagonal direction) indicates which of the two
bands is "busier."

Analogous remarks can be made about the b-band case for b > 2.
Evidently, measures such as b) and c), can only be obtained

from a two-band scatter plot such as Da; they could not be
derived by analyzing the two bands separately, since they mea-
sure the correlatedness of the absolute difference values between
the bands. Thus it is clear that texture features based on a
two-band D6 can provide information about the texture not
available from single-band texture features. This means that, in
principle, pairs of two-band textures exist that can be dis-
criminated easily when features based on a two-band Db are used
but that are hard to discriminate based on single-band features.
Of course, this does not imply that such pairs of textures will be
very common; it may be difficult to find such examples.

III. EXAMPLES
The following examples are based on a class of synthetic

single-band textures derived from stationary random field models
having given types of neighbor dependence [3]. Three examples of
textures generated by such models are shown in Fig. 1.

Artificial two-band textures were created from these single-band
textures as follows: let Tbe agiven single-band texture, and let T
be the two-band texture whose bands are T and T shifted by the
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TABLE I
ASM AND CON STATISTICS FOR THE Ds PLOTS IN FIG. 2

Relative Displacement ASM CON
Texture of "bands" X l03

(a) 1 4.0 530
2 4.4 532
4 4.6 458

(b) I 2.1 103
2 2.4 64
4 2.2 75

(c) I 1.1 123
2 1.0 295
4 1.0 198

(c)

Fig. 1. Three textures generated by stationary random field models [31.

Fig. 2. D8 plots for two-band textures derived from the textures in Fig. 1.
One band is cyclically shifted relative to the other by 1, 2, or 4 pixels to

produce the plots in left, center, and right columns, respectively.

amount A,. The smaller Si (relative to the neighborhood used in
defining T), the more these two bands should be correlated. Thus
if we consider a set of two-band textures T, having of various
sizes, we should obtain rather different two-band scatter plots Dj
when Ia1 is small.

Fig. 2 shows examples of the Da plots obtained for the syn-

thetic textures in Fig. 1, using B, = (1,0), 8a = (2,0), 83 = (4,0),
and A = (1,0). We see that the scatter plots are indeed rather
different for the different ai. To quantify this difference, Table I
shows the values of two statistics measured for these scatter
plots: the sum of the squares of the values (ASM) and the
moment of inertia about the 450 diagonal (CON) [ I], [2].

Multiband features should be especially useful if we apply
them to "eigenbands" produced by applying a principal-compo-
nents transformation to the original bands, since the eigenbands
should be less correlated than the originals. On eigenbands and
their role in the analysis of multispectral imagery see [4].
We now give an example in which two-band texture features,

derived from eigenbands, appear to provide better information
than is available from the individual bands. Figs. 3-6 show a set
of 32 64 X 64 pixel images of the Copper Mountain, WY, area.

The images in Figs. 3 and 5 are in eigenband 1, while those in
Figs. 4 and 6 are eigenband 3. The original images were classified
by a geologist into two categories: uranium-bearing (U) and
nonuranium bearing (NU); these classes are shown in Figs. 3, 4
and 5, 6, respectively.

In earlier experiments [5], texture features derived from the
eigenbands gave partial separations between the U and NU
samples. Tables II-IV show, for eigenband 1, eigenband 3, and
the pair of bands, the values of the texture features ASM, CON,
and IDM. [For a scatter plot (ei,). we have ASM - :e2/,

Fig. 3. Uranium-bearing images. eigenband t.

(a)
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Fig. 4. Nonuranium-bearing images, eigenband 1.

Fig. 5. Uranium-bearing images, eigenband 3.

Fig. 6. Nonuranium-bearing images, eigenband 3.
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TABLE II
VALUES OF TEXTURE FEATURES DERIVED FROM EIGENBAND I

Uranium Non-uranium
image no. CON IDM ASM image no. CON 1DM ASM

1 43 248 397 1 27 326 1146
2 39 256 445 2 29 332 1037
3 36 241 553 3 32 302 758
4 47 213 436 4 42 254 558
5 38 248 587 5 52 216 455
6 38 269 668 6 45 240 516
7 44 241 419 7 44 244 319
8 37 244 477 8 33 297 782
9 36 241 541 9 33 296 879
10 37 246 5834 10 26 310 950
11 43 221 440 11 30 304 750
121 37 237 483 12 40 267 491
13 52 207 338 13 52 226 390
14 37 252 584 14 42 275 486
15 32 27 1 639 15 36 261 720
16 35 260 599 16 36 254 545
17 42 229 423 17 36 266 657
18 39 232 515 18 34 269 670
19 70 189 257 19 42 229 441
20 46 236 492 20 35 265 660
2 1 30 284 889 21 46 230 399

2233 262 691 22 53 212 313
23 41 235 550 23 48 233 340
24 45 226 478 24 43 250 503
25 44 217 455 25 43 260 529
26 41 243 647 26 46 233 369
27 3n2 .267 792 27 56 198 307
2B 28 280 810 28 45 237 489
29 28E 286 818 29 55 232 344
30 46 208 470 30 50 213 463
31 36 244 662 31 56 208 424
3-2 49 21 471 32 44 219 443

TABLE III
VALUES OF TEXTURE FEATURES DERIVED FROM EIGENBAND 3

Uranium Non-uranium
image no. CON 1DM ASM image no. CON 1DM ASM

1 121 118 201 1 118 126 249
2 117 121 -44 2 121 122 224
3 116 120 261 3 116 123 253
4 122 116 250 4 124 120 227
5 120 121 246 5 13') 116 222
6 111 123 272 6 122 119 231
7 123 119 226 7 129 112 184
8 125 117 235 8 124 121 209
9 124 114 236 9 111 126 260
10 118 119 265 10 114 124 250
11 125 115 198 11 115 127 262
12 125 112 221 12 115 123 259
13 128 121 208 13 125 115 224
14 118 119 242 14 121 117 223
15 119 117 255 15 121 123 239
16 119 121 258 16 121 121 218
17 124 120 240 17 119 123 237
18 128 116 230 18 121 118 245
19 13- 115 210 19 125 115 212
20 122 119 246 20 134 165 749
21 114 122 89 21 148 125 209
22 -112 13 275 22 135 117 180

23 116 115 266 23 132 127 187
24 115 120 275 24 128 143 332
25 121 119 270 25 137 127 223
26 119 117 278 26 137 117 200
27 108 126 325 27 131 111 188
28 111 128 318 28 124 116 203
29 114 119 275 29 124 125 21 1
30 115 122 299 30 121 120 222
31 110 1C27 313 31 116 122 255
3X 119 115 266 32 115 1 24 258
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TABLEIV
VALUES OF Two-BAND TEXTURE FEATURES

Uranium Non-uranium
image no. CON IDM ASM image no. CON IDM ASM

1 173 82 211 1 111 121 458
2 117 111 260 2 148 105 398
3 101 114 328 3 133 107 357
4 106 116 290 4 150 95 303
5 108 115 321 5 166 80 284
6 102 122 361 6 170 86 295
7 132 98 243 7 220 79 180
8 116 111 276 8 201 89 3,27
9 103 117 303 9 118 116 399
10 102 120 337 10 112 125 413
11 122 109 256 11 111 115 351
12 109 117 277 12 13X 104 263
13 174 103 227 13 155 95 244
14 109 110 320 14 178 94 242
15 101 116 318 15 102 119 359
16 99 117 323 16 136 107 288
17 167 97 273 17 100 121 337
18 153 104 304 18 107 113 342
19 173 98 185 19 148 104 251
20 144 104 287 20 358 81 330
21 109 112 439 21 261 91 221
22 139 98 382 22 199 98 189
23 113 109 336 23 213 93 188
24 149 92 316 24 248 89 257
25 185 81 307 25 221 93 245
26 166 86 382 26 198 86 214
27 139 91 448 27 191 92 189
28 156 86 446 8 150 98 262
29 184 72 400 9 184 96 211
30 131 98 335 30 133 114 284
31 134 98 405 31 115 113 290
32 135 105 323 32 114 111 298

CON = eij(i)2, and ISM Ele1j/[l +(i-j)2),] The
features are based on pairs of pixels at unit horizontal separation.
A good example of partial separation is given by the two-band
CON feature, for which 11 of the 32 NU samples (numbers 5, 7,
8, 20-27), but none of the U samples, have values > 186. None
of the one-band features are as effective in defining distinctive
NU ranges, though some of them do distinguish smaller (and
different!) sets of NU's (e.g., for the IDM feature in eigenband 1,
NU samples 1-3 and 8-11 have values > 287, while no U
samples are in this range). Another example, in which single-band
features do better, is provided by the ASM feature in eigenband
3, for which 14 of the U samples (numbers 6, 10, 21-32) have
values > 265; two of the NU samples (20, 24) also lie in this
range, but these NU samples have much higher values of the
IDM eigenband 3 feature than any of the other samples. (The
two-band ASM feature performs similarly, but not as well; it
yields a distinctive range for only seven of the U samples: 22,
26-31.)
These results show that two-band features can sometimes yield

better (partial) separations between texture classes than single-
band features. They are thus potentially useful, and should be
taken into consideration for other tasks involving texture classifi-
cation on multispectral imagery.

IV. CONCLUDING REMARKS

Two-band texture features have the potential of providing
textural information that is not available from single-band fea-
tures. If other investigators experiment with two-band features,
other cases will be found in which the two-band approach is
advantageous.
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Abstract-A method of extracting features such as buildings and roads
from high-resolution aerial photographs is described. The approach in-
volves several successive stages of grouping of edge segments. Straight line
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