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TABLE II
ENTROPY OF PICTURES FOR DIFFERENT VALUES OF FUZZIFIERS

ENTTRCOY H (X)

PICTURE F =2 F =3
X e e

Fd Fd 30 Fd 40 F =20 F =30 F 40

Firg.4 0.749 0.896 0.963 0.474 0.679 0.812
Fig.6(a) 0.639 0.778 0.854 0.398 0.561 0.682
Fin.6 b) 0.642 0.783 0.860 0.399 0.564 0.686
FiLg.6(c) .640 0.783 0.862 9.395 0.562 0.685
Fig.7 (b) 0.644 0.785 0.862 0.400 0.566 0.688
Fig.8(b) 0.639 0.782 0.361 0.393 0.560 0.683
Fi1. 10 0.825 0.867 0.364 0.681 0.793 0.842

(Fig. 4), a large number of levels near the crossover points and it
is these levels which cause an increase in (P,,, n P-n,) value. But
the case is different for Fe= 2 and F. 40, where the crossover
point becomes lower than all the others and the number of pixels
having intensity below this point therefore becomes smaller than
that in the input picture. The index value is thus decreased.
Outputs in Fig. 9 do possess a minimum yI value due to the T3
operation, which reduces the ambiguity by further increasing/de-
creasing the property values which are greater/smaller than 0.5.

In a part of the experiment, these y values were compared with
those of "entropy" H(X) (14) of the pictures. Table II shows the
H values for some of the images (as typical cases for illustration)
with the same values of F, and Fd as used for -y,(X). The nature
of variation of entropy with F, and Fd is seen to conform to that
of the linear index of fuzziness; only the effective values are
larger.

VII. CONCLUSION
The concept of the fuzzy set is found to be applied successfully

to the problems of grey-tone image enhancement. The addition of
a smoothing algorithm between primary and final enhancement
operations resulted in an improved performance. The three differ-
ent smoothing techniques considered here are defocussing, aver-
aging, and max-min rule over the neighbors of a pixel. All these
techniques are seen to be almost equally effective (as measured
by the amount of fuzziness present) in enhancing the image
quality. The performance of this system in enhancing an image is
also compared with that of the histogram equalization technique,
an existing method and is seen to be much better as far as
ambiguity is concerned. The linear index of fuzziness -y,(X) and
entropy H( X) of an image reflect a kind of quantitative measure
of its quality and are seen to be reduced with enhancement. The
amount of ambiguity is found to be minimum when the T3 rule is
adopted in the enhancement algorithm. H(X) provides higher
effective values of fuzziness as compared to 'y,(X) but the nature
of their variation among the different images with respect to F,
and Fd is identical.
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The Weibull Distribution as a Human Performance
Descriptor

GAYLE L. BERRY

Abstract-Results which support the contention that the Weibull distri-
bution is a better fit to human task performance times than the Gaussian
are shown. A method for estimating the Weibull parameters is shown to be
accurate.

INTRODUCTION
There are many situations in which it is necessary to predict

the performance of people doing complex tasks in human-
machine systems. Control of vehicles (aircraft, ships, space shut-
tle, etc.), control of processes (refineries, nuclear power stations,
chemical plants, etc.), and communications, command, control,
and intelligence (C3 I) situations (tactical or strategic) are some
that come to mind which have in common that consequences of
incorrect or untimely performances can be disastrous. To be able
to predict the likelihood of correct and timely human actions in
these and many more mundane situations would assist in the
design of systems which would increase the probability of suc-
cessful operation.
Computer simulation of human-machine systems is one valua-

ble way of gaining insight into the performance of the entire
system and the interactions of the human and machine compo-
nents within the system. Monte Carlo simulations, however,
require certain types of data to be input, one of which is
information about the distribution of performance times for the
individual tasks which comprise the network of interaction.
Clearly, the probability distribution used to model individual task
performance times is crucial to this method. There is little point
in acquiring (at significant expense) accurate data about perfor-
mance times if it is only used to derive parameters for an
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incorrect distribution. What little evidence exists indicates that
the Gaussian (or normal) distribution is not the correct distribu-
tion for modeling task performance time despite its common use
and simplicity.

BACKGROUND
Individual researchers have generally acquired empirical data

on human performance times where possible, and made whatever
approximations that could best be made where no data were
available. In either case, some assumption was made about the
nature of the distribution of the data; generally, that it was
Gaussian. Other choices, of lower popularity in simulation prac-
tice, have been the uniform, triangular, and log normal distribu-
tions [1], [2].
A uniform distribution is obviously not appropriate for mod-

eling the variability of task performance times, but has the
advantage of simplicity. A triangular distribution, formed from
estimates of the most likely, minimum, and maximum perfor-
mance times is a step above the uniform distribution. It is still
quite simple but provides a better representation of performance
time variability. The log-normal distribution can represent skew-
ness and has been used to model performance times for repair
tasks [1]. For larger or composite tasks such as repair tasks, then,
the shape of the log normal is not so affected by extremely long,
though uncommon performance times as the Gaussian or triangu-
lar distributions would be. In the case of elemental tasks (of
which composite tasks such as repair tasks are composed) per-
formed by trained personnel, however, such outliers are not
common.

Despite the importance of accurately representing task perfor-
mance times in Monte Carlo simulation, little empirical informa-
tion is available to guide the choice from among these and other
distributions. Although the Gaussian distribution is still widely
used to describe human task performance times, its applicability
has been questioned for some time [2], [3]. Mv4ills and Hatfield [3]
investigated three probability density functions for describing
human task performance times. Examining data from six inde-
pendent tasks and a larger task constructed from the same six
elements, they concluded that the normality (Gaussian) assump-
tion should be rejected for describing human task performance
times. Furthermore, of the three probability density functions
tested, the Weibull distribution produced the best overall results.

Use of the Weibull distribution as a general assumption for
human task performance time description would be more ap-
propriate, according to Mills and Hatfield, than the Gaussian.
However in many situations empirical data are not available from
which to determine the appropriate Weibull parameters. Instead,
only the mean and standard deviation (or expert judgments of the
mean and standard deviation) are known. By these two parame-
ters, the Gaussian distribution is defined; the Weibull is not. It is
necessary to be able to conveniently estimate the Weibull param-
eters (a and A) from mean and standard deviation estimates, in
order for the Weibull distribution to come into wider use.

WEIBULL DISTRIBUTION

The Weibull two-parameter probability distribution function is
given by

f(t) = aAta-e-At, a > 0, A > 0, t > 0.

The value of a is a "shape" parameter, and A is a "scale"
parameter.

If empirical task performance time data are available, an

iterative procedure defined from the maximum likelihood method
[3] can be employed to determine a and A. In this procedure, a

and A are estimated by

n
(2)

and
n

a Xft5ln t-2ln t
(3)

where n is the number of observations of the performance time
for the task, and the t, are the observed performance times.

Given an initial value of &, A can be computed from (2). a is
then recomputed from (3) into which the previously obtained
value of A has been substituted. Since the process of iteration will
almost assuredly converge for any initial value of & [3], selection
of a starting & is not of great importance.

If, as frequently is the case, empirical human performance task
times are neither available nor possible to obtain (for reasons of
cost or time constraints, or because the task has been conceptu-
ally defined but not yet operationalized), the distribution parame-
ters must be based on judgments. Experts can generally provide
estimates of means and standard deviations for performance
times, since these parameters are directly meaningful. This is not
the case for a and A, the Weibull parameters. The following
procedure provides a way to estimate these parameters from a
known mean and standard deviation.
The mean and standard deviation for the Weibull distribution

are given by [4]

1,u= r(-+ 1 ) x- I/a

[ (a ) a ))

Rearranging,
ln A

a-[,u/r(a

(4)

(5)

(6)

and

A=exp[- [Ina -In(F( + I) +(±I)}2)]]

(7)

By selecting a starting value, a, and using the expert estimate for
a in (7), an estimate of A, A, is obtained. Using the current
estimates of & and A, as well as the expert estimate of It in 6, a
new estimate of & is found. This procedure is repeated until a
desired accuracy is attained.

RESULTS

Performance time data from seventeen tasks were collected.
The tasks were components of a computer-based game which
involved two human operators using a graphics cathode ray tube
(CRT) terminal with keyboard and joystick (Tektronix 4051
graphics computer), an electronic timer, and manual recording
equipment. Tasks included reading aloud numeric and short
phrase information, keying in short alpha or numeric data strings,
using the joystick to match a fixed point on the graphics CRT,
deciding among up to three given alternatives, reading informa-
tion from an electronic timer, entering time or short numeric data
manually in a log, and locating information in a manual. Both
manual and cognitive tasks are included. The complete game and
tasks are described in Berry [5]. Four pairs of operators, all
college students familiar with the computer equipment employed,
performed the game. The students, two females and six males,
ranging in age from 20 to 34, were videotaped, and performance
times collected from the videotapes. Because some of the tasks
were performed much more often than others, the total number
of observations varied from 13 for task three to 85 for task one.
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Fig. Comparison of Weibull and Gaussian distributions with observed
performance times.

The sample mean and standard deviation were computed for
each task and the Weibull parameters a and X determined from
(2) and (3) (this was possible since the raw data were available).
Fig. 1 shows the Gaussian and Weibull distributions superim-
posed on the raw data for a sample task, task six. This figure
illustrates one natural advantage of the Weibull over the Gauss-
ian distribution in representing human performance times: the
Weibull distribution is nonnegative. Gaussian distributions are

not so restricted, of course, and when used in a Monte Carlo
sirnulation to represent performance times, must be artificially
truncated.
The Weibull parameters were recomputed using only the sam-

ple mean and standard deviations and (6) and (7). The iterative
procedure using these two equations was very sensitive to the
starting value of & selected. Using only the values of the sample
mean and standard deviation, the ratio t/s was used as an

estimator of a, the "shape" parameter of the Weibull distribu-
tion. As can be seen from Fig. 2, this provided an excellent first
approximation which very closely matched the final a value.

Since it would normally only be necessary to use this procedure
when raw data are not available, and the mean and standard
deviation are estimations of experts, a stringent convergence
criterion was not used for the iteration procedure. The procedure
was considered to be converged when two successive values of a
and of X each differed by no more than three percent.

Table I contains the values of a and X as computed from the
raw data, using (2) and (3) and as computed from the sample
mean and standard deviation using (6) and (7). The maximum
relative difference between a values computed for the same task
is for task six (25.3 percent) and between A values is for task nine
(42.7 percent). Despite these apparently wide differences, the
graphs of the two Weibull distributions for these (as for the
other) tasks are quite similar.

GoODNESS OF FIT

A chi-square goodness-of-fit test was performed for each of the
seventeen tasks, with the Gaussian, Weibull from raw data, and
Weibull from sample mean and standard deviation. At the five
percent level of confidence, the Gaussian distribution provided a

satisfactory fit to the data in only three of the 17 cases; the
Weibull from raw data was satisfactory in 13 out of 17 cases;

anid, the Weibull from sample mean and standard deviation was

satisfactory in 15 out of 17 cases. Table II summarizes these
results.
The Weibull distribution computed in either manner is a much

beitter choice than the Gaussian distribution for modeling perfor-
mance times for these 17 tasks. Besides providing a better fit to
the data in so many instances, there were no tasks for which the
Gaussian distribution was acceptable and the Weibull not. In
addition, the method for estimating a and A from the sample
mean and standard deviation was at least as satisfactory as that
which used all the available raw data. This method using (6) and
(7) was unacceptable in only two instances, neither of which was

acceptably modeled by the other methods either. (One of these
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Fig. 2. Final estimation of a versus initial estimate of t/s.

TABLE I
WEIBULL PARAMETERS COMPUTED FROM RAW DATA AND FROM

SAMPLE MEAN AND STANDARD DEVIATION

Weibull Parameters

Sample Standard
Raw Data Mean Deviation

A A A A
Task a > X

1 1.61 20.3 1.50 17.0
2 1.88 13.3 1.83 12.7
3 1.88 204.3 1.84 183.8
4 1.13 4.11 1.12 4.02
5 1.44 1.51 1.43 1.45
6 1.06 11.5 .792 7.66
7 1.63 48.1 1.53 36.8
8 1.38 11.2 1.41 12.0
9 1.23 34.1 1.01 19.5

10 2.25 1035. 2.18 857.9
11 1.77 33.4 1.64 26.4
12 0.99 2.84 1.14 3.19
13 1.62 67.1 1.56 57.1
14 2.17 4234.5 2.11 3265.6
15 1.99 57.8 1.91 51.6
16 2.09 19.6 2.02 17.2
17 1.82 99.3 1.84 104.8

TABLE II
CHI-SQUARE GOODNESS-OF-FIT TEST FOR 17 TASKS AND THREE

PROBABILITY DISTRIBUTIONS AT FIVE PERCENT LEVEL OF
CONFIDENCE*

Weibull

Mean and
Standard

Task Normal Raw Data Deviation

1 *
2
3
4 *
5 * *

6 *
7 *
8
9 * *

10 *
11 *
12 * * *

13 *
14 * *
15 *
16 *
17 *

*Reject the hypothesis that data fit the given distribution, at the five
percent level of confidence.

tasks turned out to be essentially bimodal and so is not expected
to be matched by these distributions.)

SUMMARY AND CONCLUSIONS
The Gaussian distribution has been widely used to model

human task performance times. Previous studies indicated that
the Gaussian distribution was a poor model for human task
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performance time, and that the Weibull distribution was signifi-
cantly more accurate. The results of this experiment with 17 tasks
strongly supports both these positions.
To make use of the Weibull distribution practical a relatively

simple method to estimate the Weibull parameters a and A was
used which requires only knowledge of (or estimates of) task
performance time mean and standard deviation. The chi-square
goodness-of-fit test showed the Weibull distribution derived in
this manner to be at least equal in performance to the Weibull
distribution derived directly from the complete raw data.

If actual performance data are available the maximum likeli-
hood method (2) and (3) for estimating a and A would be
preferred. Not only does this procedure employ all the (unaggre-
gated) data, but it is also computationally simpler and more
robust. The computations used here were performed in Basic on a
Tektronix 4051 graphics computer, and any microcomputer with
Basic (or other high level language) capabilities would be equally
satisfactory.
The second procedure (using (6) and (7)) is more sensitive,

especially to the starting value chosen for a. It also requires the
use of the gamma function, which is generally only available in
larger computing facilities. The computations for this correspon-
dence were performed on a Univac 1100/45 computer. Smaller
computers could be used, provided a gamma function routine was
available. However this procedure requires only values for the
mean and standard deviation as input.
Although the choice of procedure for estimating a and A

depends on the data available, the choice of the Weibull over the
Gaussian distribution for modeling human performance times is
clearly in favor of the Weibull. Using this distribution in Monte
Carlo simulations of human-machine systems will provide a
more accurate representation of the performance times of the
component tasks.
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A Mathematical Model for the Diffusion of Innovation

PETER MARKOWICH

Abstract-A model for the temporal diffusion of technological innova-
tion is presented. This model is derived by describing mathematically the
production behavior of technologies and the buying behavior of the average
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consumer. It has the structure of a three-dimensional dynamical system,
and its state variables are the production quantities'of the innovative and
the old technology and the market share of the innovative technology in
terms of sales. Unit prices and external capital flows of both technologies
are regarded as external variables. The focus of the model is the explora-
tion and description of the interaction of the technological and societal
aspects which drive the diffusion process.

I. INTRODUCTION
Modeling the diffusion of technological innovation has been a

research topic for many years. Since the evolution of a new
technology is an extremely complex process depending on various
economical, environmental, and political parameters [1], [2] and
on the kind of innovation we are dealing with, there is a large
diversity of models which differ in methodology, goal, and focus.
Used methodologies range from verbal argumentation to high
level mathematical sophistication. The goals vary from pure
description to policy orientation using optimization techniques
[3], [4]. An overview of used approaches is given in [5].

There are models describing the spatial spread of innovation
which regard the spread of information as the basic factor for the
spatial diffusion. These models take into account geographical
factors which may very well inhibit or favor the spread of
information. Some of them also describe the temporal diffusion
of a new technology. The basic ideas of spatial and spatial-
temporal diffusion models are explained in [6]-[9].
An important temporal diffusion model is the well-known

empirical Fisher and Pry logistic substitution model [1O] which is
based on the observation that market shares of (successful)
technologies admit roughly an s-shaped pattern. This leads to the
model equation

F= cF(l -F), F(to) = Fo

where F= F(t) represents the market share (in terms of pro-
duction) the new technology has obtained at time t and the
parameters Fo, c have to be estimated from historical data. Many
investigations were carried out in order to refine the Fisher-Pry
model [11]-[14]. These more sophisticated empirical models tried
to do better curve-fitting to historical data and, therefore, did not
give much information on the underlying system.

Recently, Peterka [15] used a more systematic and formal
approach to investigate the competition of n technologies for the
same market. Using basic economic considerations which de-
scribe the supply (or technological) aspect of the diffusion pro-
cess, he derived a model which reduces to the Fisher and Pry
model in the case of two competing technologies. This model was
extended by Spinrad [16].

Also the demand (or societal) aspect of the (temporal) diffu-
sion process has been modeled extensively. Mansfield [ 17] pointed
out the importance of imitation for the diffusion and Stover [18]
used these ideas in setting up a decision-theoretical diffusion
model. Peterka and Fleck et al. [19] used similar techniques in
analyzing the buying behavior of the average consumer. It turns
out that the model they derived is qualitatively consistent with
the Fisher-Pry model. The adoption behavior of potential
customers has been investigated extensively using stochastic-
decision-theoretical methods [20]-[22]. The models described in
[23] particularly focus on the interaction of adopters and non-
adopters and on the impact of advertisement on the adoption
process. However not much work has been done in order to
model the interaction of supply and demand aspect, which to-
gether drive the diffusion process (one model having features of
both aspects can be found in [24]).
A differential equation model with production quantities and

market shares in terms of sales as state variables is derived here
by taking into account basic economic considerations determin-
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