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Correspondence

Image Enhancement Using Smoothing with Fuzzy
Sets

SANKAR K. PAL AND ROBERT A. KING

Abstract-A model for grey-tone image enhancement using the concept
of fuzzy sets is suggested. It involves primary enhancement, smoothing, and
then final enhancement. The algorithm for both the primary and final
enhancements includes the extraction of fuzzy properties corresponding to
pixels and then successive applications of the fuzzy operator "contrast
intensifier" on the property plane. The three different smoothing tech-
niques considered in the experiment are defocussing, averaging, and max-
min rule over the neighbors of a pixel. The reduction of the "index of
fuzziness" and "entropy" for different enhanced outputs (corresponding to
different values of fuzzifiers) is demonstrated for an English script input.
Enhanced output as obtained by histogram modification technique is also
presented for comparison.

I. INTRODUCTION

The theory of fuzzy set [1], [2] provides a suitable algorithm in
analyzing complex systems and decision processes when the
pattern indeterminacy is due to inherent variability and/or
vagueness (fuzziness) rather than randomness. Since a grey tone
picture possesses some ambiguity within pixels due to the possi-
ble multivalued levels of brightness, it is justified to apply the
concept and logic of fuzzy set rather than ordinary set theory to
an image processing problem. Keeping this in mind, an image can
be considered as an array of fuzzy singletons [1], [2] each with a
membership function denoting the degree of having some bright-
ness level.
The methods so far developed for image enhancement may be

categorized into two broad classes [3]-[6], namely, frequency
domain methods and spatial domain methods. The technique in
the first category depends on modifying the Fourier transform of
an image, whereas in spatial domain methods the direct manipu-
lation of the pixel is adopted. Some fairly simple and yet power-
ful processing approaches are seen to be formulated in the spatial
domain [3], [4]. It is to be mentioned here that all these tech-
niques are problem oriented. When an image is processed for
visual 'interpretation,' it is ultimately up to the viewers to judge
its quality for a specific application. The process of evaluation of
image quality therefore becomes a subjective one.

In this correspondence we present a model (Fig. 1) consisting
of primary and final enhancement for a grey tone image using
fuzzy algorithm along with smoothing operations. The procedure
involves a primary enhancement of an image by the block E
followed by a smoothing through S and a subsequent enhance-
ment by a second use of block E. The fuzzy contrast intensifica-
tion (INT) operator is taken as a tool for both the primary and
final enhancements in the fuzzy property domain. This domain is
extracted from the spatial domain using fuzzifiers [7], [8] which
play the role of creating different amounts of ambiguity in the
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Fig. 1. Block diagram of the enhancement model.

property plane. The function of an image smoother (block S) as
introduced after the primary enhancement is to blur the image
and the blurred image is then reprocessed by another enhance-
ment block E. The ultimate object of using a second E block is to
have further improvement in image quality. The performance of
the model for different values of the fuzzifiers is demonstrated on
a picture of handwritten English recursive script when the de-
focussing, averaging, and max- min techniques are used sep-
arately in the smoothing algorithm. The results are compared
with those obtained using histogram modification technique [4].
The "index of fuzziness" [9], [10] which reflects a kind of

quantitative measure of an image quality is measured for each
output and is compared with that of "entropy" [11]. The system
CDC 6400/6500 was used for numerical analysis.

II. FUZZY SET AND THE CONCEPT OF ENHANCEMENT
A fuzzy set (A) with its finite number of supports x,, x2, .X

in the inverse of discourse U is defined as

(la)A = {(,UA(xi), xJ)}
or, in union form,

A= U /iI/x, i =1,2,---,n (lb)

where the membership function ILA(xi) having positive values in
the interval (0, 1) denotes the degree to which an event xi may be
a member of A. This characteristic function can be viewed as a
weighting coefficient which reflects the ambiguity (fuzziness) in
A. A fuzzy singleton is a fuzzy set which has only one supporting
point. If ILA(xi) 0.5, xi is said to be the crossover point in A.

Similarly, the property p defined on an event xi is a function
p(x;) which can have values only in the interval (0,1). A set of
these functions which assigns the degree of possessing some
property p by the event xi constitutes what is called a property
set [12].

A. Image Definition
With the concept of fuzzy set, an image X of M X N dimension

and L levels can be considered as an array of fuzzy singletons,
each with a value of membership function denoting the degree of
having brightness relative to some brightness level 1, /=
0, 1, 2, ,L -1. In the notion of fuzzy set, we may therefore
write

X= U U Pn1?/xn1, m = 1,2, ,AM; n = 1,2, ,N
m n (2)

where Pn,n I/x in (O t<pAn 1) represents the grade of possessing
some propertypm,, by the (m, n)th pixel xm,,. This fuzzy property
p,n may be defined in a number of ways with respect to any
brightness level depending on the problems at hand. In our
experiment, we have defined (as shown in (6)) it with respect to
the maximum level L -1.

B. Contrast Intensification and Enhancement in Property Plane
The contrast intensification operator (INT) on a fuzzy set A

generates another fuzzy set A' = INT(A), the membership func-
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tion of which is

ILA' (X ) - P INT(A)(X )
f2[AA(X )]2, 0 < ILA(x) < 0.5

1 - 2(1 - 2LA(X))] 0.5 P A(x) < 1. (3b)

This operation reduces the fuzziness of a set A by increasing the
values of AA(x) which are above 0.5 and decreasing those which
are below it. Let us now define operation (3) by a transformation
T, of the membership function It(x).

In general, each p,,,,, in X (2) may be modified to p',,, to
enhance the image X in the property domain by a transformation
function Tr where

Tr (Pn),
PMs =I r(Pmn ) l r( pm? )9

0 <Pmn< 0. 5
0.5 < Pmrl I (4b)

r 1,2

The transformation function Tr is defined as successive applica-
tions of T, by the recursive relationship

T1(pmn) = Tj(T,_i(Pmj)}, S = 1,2, (5)

and Ti(pm,i) represents the operator INT defined in (3) in our
problem.

This is shown graphically in Fig. 2. As r increases, the curve
tends to be steeper because of the successive application of INT.
In the limiting case, as r -- oo, Tr produces a two-level (binary)

image. It is to be noted here that corresponding to a particular
operation of T' one can use any of the multiple operations of T"
and vice versa to attain a desired amount of enhancement.

C. Property Plane and Fuzzification
All the operations described above are restricted to the fuzzy

property plane. To enter this domain from the spatial xm,, plane,
we define an expression of form similar to that defined by one of
the authors in speech recognition [7], [8]:

p =W, G(Xmn) + (Xmax X )

m 1,2, ,M; n = 1,2, ,N (6)

where xmax denotes the maximum grey level (L -1) desired, Fe
and Fd denote the exponential and denominational fuzzifiers,
respectively. These fuzzifiers have the effect of altering ambiguity
in the p plane. As will be shown later, the values of these two
positive constants are determined by the crossover point (xc, for
which p, = G(xc) = 0.5) in the enhancement operation.

Equation (6) shows that pm, 1 as (Xmax X1) -O 0 and
decreases as (xm -xm,,) increases. In other words, the fuzzy
property pm,? as defined here denotes the degree of possessing
maximum brightness level xma,x by the (m, n)th pixel Xm,, Pmn =1
denotes light and pm,, = 0 dark.

It is to be noted from (6) that for xm,, 0, pm,, has a finite
positive value a, say where

a = ( +Xmax) (7)

So the Pmn plane becomes restricted in the interval [a, 1] instead
of [0, 1]. After enhancement, the enhanced p,, plane may contain
some regions where pmn < a due to the transformation T'. The
algorithm includes a provision for constraining all the p,,7, < a
values to a so that the inverse transformation

(8)

will allow those corresponding x',, values to have zero grey level.
Of course, one can change a to some other value depending on
the contrast or background level desired.

Furthermore, since there are only L(0, 1, 2, L 1) equally
spaced allowed levels in an image, each of the transformed xn,n
values must be assigned to its closest valid level to result in an
enhanced image X'.

D. Selection of Fe and Fd
From the enhancement operation it is noted that we have to

select a suitable crossover point xc from the image plane so that
all the xm,, i xc in spatial domain would possess values PAn e 0.5
in property domain. The successive use of INT operator would
then intensify the contrast by increasing the values of Pm,,> 0.5
and decreasing those p,,,,, < 0.5.

Suppose we want to put the threshold of enhancement opera-
tion between the levels I and I + I so that after the enhancement
operation, all the x,,,,,> (1 + 1)/< 1 would possess increased/de-
creased levels. Then we consider,

x Il + 0.5

p- 0.5

and the value of Fd for a specific Fe can correspondingly be
determined from (6). The higher the value of Fe the greater will
be the rate of increase/decrease of p,,,, values after/before xc
and hence the lower is the value of r to attain a desired amount of
enhancement.

For example, if /= 9 then x. = 9.5 and with xma = 31, and
for Fe= 1 and 2, we obtain from (6) that Fd is 21.5 and
52, respectively. The corresponding p,,,,, values corresponding
to XM = .. ., 7, 8, 9, 10, 11, 12 are,are , 0.473, 0.483,
0.494, 0.506, 0.518, 0.531, and , 0.468, 0.481, 0.494, 0.507,
0.522,0.536,... for Fe = 1 and 2; respectively. The rate of in-
crease/decrease of p,,,, values after/before the crossover point
is seen to be higher for values of Fe = 2 than 1. The enhancement
of the contrast for a specific value of r would therefore be better
for Fe = 2.

E. Elements of the Enhancement Block 'E'

The elements constituting the primary and final enhancement
blocks E (in Fig. 1) are shown in Fig. 3.
The function G(xn,,,) as defined by (6) uses two fuzzifiers Fe

and Fd to extract the fuzzy property p,,,,, for the (m, n)th pixel
x,,,,, of an M X N input image array X. The transformation
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x
Fig. 3. Elements

function T7(pmn) serves the role of enhancement in property
plane using r successive use of the fuzzy INT operator. This is
explained by (3) to (5). The enhanced p' domain after being
inversely transformed by G -l(p,,,,) (8) produces the corre-
sponding enhancement image X' in spatial domain.

III. INDEX OF FUZZINESS AND ENTROPY
The index of fuzziness of a set A having n supporting points is

defined as [10]
2

y(A) = d(A,Ai),nk (9)

where d(A, A) denotes the distance between fuzzy set A and its
nearest ordinary set A. The set A is such that pLA(xi) O if
ILA(Xi) < 0.5 and I for pA(xi) > 0.5. The positive constant k
appears in order to make -y(A) lie between 0 and 1 and its value
depends on the type of distance function used. For example,
k = 1 for a generalized Hamming distance whereas k = 0.5 for
an Euclidean distance. The corresponding indices of fuzziness are

called the linear index of fuzziness -y,(A) and the quadratic index
of fuzziness Yq(A). Considering 'd' to be a generalized Hamming
distance we have

d(A, A) = EIILA(Xi) (10)

and

2
y1(A) IAAnAi(x) i = 1,2,- * ,n (lla)

where A n A_is the intersection between fuzzy set A and its
complement A. A flA (x,) denotes the grade of membership of xi
to such a fuzzy set A nf A and is defined as

fAnA(xi) min{IA(xJ)I,A-(Xi)}, for all i

=min{,LA(x), (1- IA(x(i), for all i.

(1 lb)
Extending (11) in a two-dimensional image plane we may write

y1(X) = 2N E xnx(Xmn)
m n

m = 1,2, *M; n = 1,2,. ,-N. (12a)
Equation (12a) defines the amount of fuzziness present in the

property plane of an image X. ,I corresponds to Pmn X n Xis the
intersection between fuzzy image planes X= APmn/Xmn} and
X= {(l Pmn)/Xmnl, the complement of X. Kxn(Xmn) de-

notes the degree of membership of (m, n)th pixel xmn to such a

fuzzy property plane X n X so that

Axnx (Xmn ) =Pmn nAPn

=-min{pmn I (1 -Pmn ) } for all (m, n )

The entropy of a fuzzy set A having n supporting points as

where

sn(,ux(xmn ))

lmn b G-G(3P mn) > OUT
xI

of block E Fig. 1.

defined by De Luca and Termini (1 1) is
1

11(A) nln2 (A X ) i= 1,2,** ,n (13a)

with the Shannon's function

sn(ILA(Xi)) = P,A(Xi) ln,LA (Xi )
-(3 -mA(Xi))onalI -a(xi)). (13b)

Extending (13) in a two-dimensional image plane we have

(14a)

.Ax(Xmn) ln Ax(Xmn )

-(1 - x(xmn))ln(I LX(Xmn))A
m = 1,2,,M;n = 1,2, ,N. (14b)

The term H(X), 0 - H(X) < 1, measures the ambiguity in X
on the basis of the well-known property of Shannon's function sn

(a)- montonically increasing in the interval (0,0 5) and mono-

tonically decreasing in (0-5, 1) with a maximum (_ unity) at
,-05 in the fuzzy property plane of X.

IV. SMOOTHING ALGORITHM
The idea of the smoothing is based on the property that image

points which are spatially close to each other tend to possess
nearly equal grey levels. Let us now explain three smoothing
algorithms which have been tested in S block of Fig. 1.

A. Defocussing
The (m, n)th smoothed pixel intensity in the first method is

defined as

X
t
= aoXt?in + a, 2 xij + a2EgXi + *- -+as 2xjj (15a)

Q] Q2 Qs
where

ao + Nla1+ N2a2 + +Nsa-= 1 I >a,> a2 ... as> °,

(i, j) =# (m, n), m 1,2,- ,M and n = 1,2, *,N (15b)

xM,, represents the (m, n)th pixel intensity of the primary en-

hanced image. Q, denotes a set of N1 coordinates (i, j) which are

on or within a circle of radius R1 centered at (but excluding) the
point (m, n). Q5 denotes a set of Ns coordinates (i, j) which are

on or within a circle of radius Rs centered at (m, n)th point but
which do not fall into Qs-. For example, Q = {(m, n + 1),
(m, n - 1), (m + 1, n), (m- 1, n)) is the set of coordinates
which are on/within a circle of radius one unit from a point
(m, n).

This smoothing algorithm is therefore a kind of defocussing
technique using a linear nonrecursive filter, where a part of the
intensity of a pixel is being distributed to its neighbors. The
amount of energy transmitted to a neighbor decreases as its
distance from the pixel in question increases. ao represents the
fraction retained by a pixel after transmission of part of its
energy to neighbors. The set a = {0a, al, a2,- ,ajs as seen from
this algorithm, plays an important role in smoothing an image
and the choice of its values is problem oriented.

H(X) - MNln2 2 sn(I x (xmn ))
m n
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Fig. 4. Input picture.

B. Averaging
The second method is based on averaging the intensities within

neighbors and is usually used to remove "pepper and salt" noise.
The smoothed (m, n)th pixel intensity is

xnn = I Xij

This is a special case of defocussing technique (15) with ao = a2
= a3 = .. = a. = 0. For a given radius, the blurring effect pro-
duced by neighborhood averaging can also be reduced by using a
threshold procedure [3], [4] where the (im, n )th intensity is changed
only if its difference from neighborhood values exceeds a specific
nonnegative threshold.

C. Max-Min Rule

Equations (15) and (16) are formulated using collective proper-
ties of pixels. The third method on the other hand, uses q
successive applications of "min" and then "max" operators [13]
within neighbors such that the smoothed grey level value of
(m, n)th pixel is

x,,, = maxq minq {xij},
Q] Qi

(i, j) =A (m, n ), (i, j) (E Q,, q = 1, 2, * . (17)
All the smoothing algorithms described above blur the image

by attenuating the high spatial frequency components associated
with edges and other abrupt changes in grey levels. The higher
the values of Q, Q,, and q, the greater is the degree of blurring.

V. ENHANCEMENT BY HIsToGRAM EQUALIZATION
If sI and nI denote the value of Ith gray level and the number

of times the Ith level has appeared in the image X and n, is the
total number (M X N) of pixels in X, then the probability of the
Ith level in X is

P(sp )=n, =a0,o1,2,nf-nc,Lo-n1. (18)n,

Now we apply a transformation function [4]

S= T(=1) =(L--1)n= (L-
i

n
si)

j=0, 1,2,- -,lj (19)
which is equal to the cumulative distribution of s1 and we will
have the modified values s; which is mapped from an original

level s1. Since only L equally spaced discrete levels are allowed in
this case, each of the transformed values s was assigned to its
closest valid level.
A plot of P(s/), the probability of the lth level in enhanced

image X', versus st would give the resulting equalized histogram.
This implies an increase in the dynamic range of the pixels which
can have a considerable effect in the appearance of an image. A
detailed discussion about histogram modification techniques is
available in [4].

VI. IMPLEMENTATION AND RESULTS
Fig. 4 shows an input picture of handwritten script (Shu) which

is to be processed with the enhancement model described above.
The digitized version of the image of this picture is represented
by a 96 X 99 array where each pixel can have one of the
32(0,1,2,- - -,9, A, B,---.,V) grey levels. Thus in our algorithm
M= 96, N =99, xmax,= L-I = 31.
Some primary enhanced pictures [9] obtained using the opera-

tor INT(INT) alone as an enhancement tool (r = 2) are demon-
strated in Fig. 5. Fe was kept constant at a value of 2. The value
of Fd was 45, 43, and 40 for the Figs. 5(a), 5(b), and 5(c),
respectively so that the corresponding threshold lay between the
grey level C and D, D and E, and E and F. The change in
enhancement between Figs. 5(b) and 5(c) is seen to be insignifi-
cant. Use of Fd = 40 made the output overcorrected and thinner.

Consider the picture of Fig. 5(b) as an input to the smoother.
The smoothing algorithm (15) included RI = I unit, i.e., N= 4
and ao= 0.4 so that

NIaI=0.6 or a,=0.15.

The final enhanced outputs of this smoothed image are shown
in Fig. 6 for three different sets of fuzzifiers. T2 =_ INT(INT) was
considered as an enhancement tool with Fe= 2 throughout. The
threshold in T2 operation was placed between the levels 8 and 9
(Fig. 6(a)), 9 and A (Fig. 6(b)), and A and B (Fig. 6(c)) and
corresponding values of Fd were 55, 52, and 49.5. Thus the value
of a becomes 0.4091, 0.3926, and 0.3782 in the respective cases.

Figs. 7 and 8 correspond to the final outputs when the averag-
ing technique and max(min) rule (16) and (17) within four
neighbors (RI = I unit and q = 1) were used in the smoother.
The crossover points in T2 operation and the values of the
fuzzifiers were considered to be the same as in the three cases of
Fig. 6.
The other parameters remaining constant, as in Fig. (6) the

output corresponding to T3 =- INT(INT(INT)) operator is dem-
onstrated in Fig. 9. These results (for Fd = 52 and F. = 2, corre-
sponding to each of the three smoothed images) are shown as an
illustration of system performance resulting from the successive
use of the fuzzy INT operator.
The edges in Figs. 6-9 as compared to Fig. 5 are seen to be

more smoothed and some of the thinned or missing pixels (espe-
cially for S) are also found to be recovered. With the decrease in
the value of Fd (i.e., increasing the crossover point) the output
becomes more corrected and thin. Use of r = 3 (T3 operation) as
compared to r = 2 only makes an increase/decrease in intensity
value of each of the pixels that is after/before the crossover
point. The quality of picture is not altered.

Experiments were also conducted for some other values of ao,
a,, and Q, but the output performance was not satisfactory. For
example, for defocusing we considered ao = 0.2, 0.4, and 0.6 in
(15) for each of the three different sets of radii namely, 1)
RI = F2, 2) RI = I and R2 = 2, and 3) RI = F2 and R2 = 2V2.
For averaging and max-min rule (16) and (17) we had used
R, = F2 and 2 separately. The energy distribution corresponding
to all these parameters was seen to make such a modification in
pixel values that some relevant information (e.g., the white
patches, which should exist in the lower whorl of S) got lost.

Fig. 10 shows an output obtained by histogram equalization
technique. This is included for comparison of the performance of
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Fig. 5. Primary enhanced output. (a) F,=2, Fd =45, r= 2. (b) F,= 2, Fig. 6. Final enhanced output using (15). (a) F.= 2, Fd =55, r= 2. (b)
Fd=43,r=2.(c)F=2,Fd =40,r =2. F= 2,Fd= 52,r=2.(c)F=2,Fd=49.5,r-=2.
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7. Final enhanced output using (16). (a) F=2, Fd=55, r=2. (b)
F=2,Fd=52,r=2.(c)F=2,Fd=49.5,r=2.
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F,=2,Fd= 52,r=2. (c)F=2,Fd= 49.5,r= 2.
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(a)

(b)

,

(c)

Fig. 9. Final enhanced output for F-= 2, Fd 52, and r = 3. (a) Using (1 5).
(b) Using(16). (c) Using(l7).

Fig. 10. Enhanced output using histogram modification technique.

TABLE I
LINEAR INDEX OF FUZZINESS OF PICTURES FOR DIFFERENT VALUES

OF FUZZIFIERS

LINEAR INDEX OF FUZZINESS YI(X)

PICTURE e e
x

F =20 F =30 F -40 F 20 Fd=30 F =40

Fig. 4 0.439 0.643 0.794 0.209 0.370 0.517
Fig. 5(a) 0.391 0.555 0.672 0.197 0.327 0.445
Fig. 5(b) 0.380 0.545 0.669 0.185 0.315 0.431
Fig. 5(c) 0.363 0.532 0.664 0.169 0.297 0.416
Fig. 6(a) 0.346 0.486 0.602 0.187 0.287 0.383
Fig. 6(b) 0.349 0.489 0.606 0.i88 0.289 0.386
Fig. 6(c) 0.346 0.487 0.606 0.184 0.286 0.383
Fic. 7(a) 0.348 0.488 0.603 0.189 0.289 0.385
Fig. 7(b) 0.351 0.491 0.607 0.190 0.291 0.388
Fig. 7(c) 0.348 0.490 0.608 0.186 0.287 0.385
Fig. 8(a) 0.344 0.489 0.604 0.190 0.284 0.384
Fig. 8(b) 0.343 0.439 0.605 0.184 0.283 0.382
Fig . 8(c) 0.341 0.486 0.608 0.176 0.281 0.379
Fig. 9(a) 0.313 0.454 0.574 0.158 0.254 0.350
Fig. 9(b) 0.314 0.456 0.575 0.160 0.255 0.352
Fig. 9(c) 0.318 0.456 0.575 0.156 0.257 0.355
Fig. 10 0.586 0.668 0.681 0.430 0.545 0.622

the present system in enhancing an image with that of an existing
technique.

Finally, the "linear index of fuzziness" yI(X) reflecting the
amount of ambiguity in a picture was measured for all these
outputs by (12a). Table I illustrates the y,(X) values of these
pictures when Fd was considered to be 20, 30, and 40 separately
with F.= 2 and 3 in measuring pn, values (A in (12a)). With the
increase in Fd or decrease in F,, the index value of a picture is
seen to be increased. This can be explained considering (6) and
(12b). Since the Pmn value for a pixel increases as Fd increases or

F, decreases, its (Pmn, n f.n) value (responsible for measuring
y,(X)) would correspondingly increase/decrease for Pmn <
0.5/> 0.5. Now for all the pictures, it is found that the number
of pixels having grey levels lower than the crossover point (as
determined by those fuzzifiers) is much greater than those having
levels higher than the crossover point. Therefore, there will be an
overall increase in (Pmn nf-mn) and hence y,(X) with increase in
Fd or decrease in Fe.

y, values are seen to be reduced (except for Fig. 10) with
enhancement. For Fig. 10, since the enhancement is done by
histogram equalization technique, it possesses an almost uniform
histogram. As a result, it contains, as compared with the input
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TABLE II
ENTROPY OF PICTURES FOR DIFFERENT VALUES OF FUZZIFIERS

ENTTRCOY H (X)

PICTURE F =2 F =3
X e e

Fd Fd 30 Fd 40 F =20 F =30 F 40

Firg.4 0.749 0.896 0.963 0.474 0.679 0.812
Fig.6(a) 0.639 0.778 0.854 0.398 0.561 0.682
Fin.6 b) 0.642 0.783 0.860 0.399 0.564 0.686
FiLg.6(c) .640 0.783 0.862 9.395 0.562 0.685
Fig.7 (b) 0.644 0.785 0.862 0.400 0.566 0.688
Fig.8(b) 0.639 0.782 0.361 0.393 0.560 0.683
Fi1. 10 0.825 0.867 0.364 0.681 0.793 0.842

(Fig. 4), a large number of levels near the crossover points and it
is these levels which cause an increase in (P,,, n P-n,) value. But
the case is different for Fe= 2 and F. 40, where the crossover
point becomes lower than all the others and the number of pixels
having intensity below this point therefore becomes smaller than
that in the input picture. The index value is thus decreased.
Outputs in Fig. 9 do possess a minimum yI value due to the T3
operation, which reduces the ambiguity by further increasing/de-
creasing the property values which are greater/smaller than 0.5.

In a part of the experiment, these y values were compared with
those of "entropy" H(X) (14) of the pictures. Table II shows the
H values for some of the images (as typical cases for illustration)
with the same values of F, and Fd as used for -y,(X). The nature
of variation of entropy with F, and Fd is seen to conform to that
of the linear index of fuzziness; only the effective values are
larger.

VII. CONCLUSION
The concept of the fuzzy set is found to be applied successfully

to the problems of grey-tone image enhancement. The addition of
a smoothing algorithm between primary and final enhancement
operations resulted in an improved performance. The three differ-
ent smoothing techniques considered here are defocussing, aver-
aging, and max-min rule over the neighbors of a pixel. All these
techniques are seen to be almost equally effective (as measured
by the amount of fuzziness present) in enhancing the image
quality. The performance of this system in enhancing an image is
also compared with that of the histogram equalization technique,
an existing method and is seen to be much better as far as
ambiguity is concerned. The linear index of fuzziness -y,(X) and
entropy H( X) of an image reflect a kind of quantitative measure
of its quality and are seen to be reduced with enhancement. The
amount of ambiguity is found to be minimum when the T3 rule is
adopted in the enhancement algorithm. H(X) provides higher
effective values of fuzziness as compared to 'y,(X) but the nature
of their variation among the different images with respect to F,
and Fd is identical.
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The Weibull Distribution as a Human Performance
Descriptor

GAYLE L. BERRY

Abstract-Results which support the contention that the Weibull distri-
bution is a better fit to human task performance times than the Gaussian
are shown. A method for estimating the Weibull parameters is shown to be
accurate.

INTRODUCTION
There are many situations in which it is necessary to predict

the performance of people doing complex tasks in human-
machine systems. Control of vehicles (aircraft, ships, space shut-
tle, etc.), control of processes (refineries, nuclear power stations,
chemical plants, etc.), and communications, command, control,
and intelligence (C3 I) situations (tactical or strategic) are some
that come to mind which have in common that consequences of
incorrect or untimely performances can be disastrous. To be able
to predict the likelihood of correct and timely human actions in
these and many more mundane situations would assist in the
design of systems which would increase the probability of suc-
cessful operation.
Computer simulation of human-machine systems is one valua-

ble way of gaining insight into the performance of the entire
system and the interactions of the human and machine compo-
nents within the system. Monte Carlo simulations, however,
require certain types of data to be input, one of which is
information about the distribution of performance times for the
individual tasks which comprise the network of interaction.
Clearly, the probability distribution used to model individual task
performance times is crucial to this method. There is little point
in acquiring (at significant expense) accurate data about perfor-
mance times if it is only used to derive parameters for an
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