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On Systems with Redundancy and their Inherent
Bounds on Achievable Reliability

PETER W. BECKER, SENIOR MEMBER, IEEE

Abstract- A system which is supposed to bring some commodity (e.g.,
electric power, gas, oil, telephone messages) from one point P to another
point T, is considered. To avoid total disruption of the services, several
parallel connections between P and T may be built, i.e., the designer tries
to enhance the system's reliability through use of redundancy. A method,
the so-called 0-transformation, is described by which the highest and lowest
system reliability achievable may be precisely determined for a redundant
configuration. As a by-product we become able to pinpoint the statistical
relationships which give rise to the highest and the lowest system reliabili-
ties. By way of a numerical example it is shown that applying redundancy to
a system does not necessarily enhance the system's reliability; we have thus
disproven one of the most cherished beliefs of the reliability community.

I. INTRODUCTION
In a developed society, distribution systems bring commodities

like electric power, oil, gas, telephone messages, etc., from one
point in space to another. To avoid total disruption of the
services, critical sections are quite often duplicated or triplicated,
i.e., the designer tries to enhance the system's reliability through
the use of redundancy. The increase in systems' reliability ob-
tained through use of redundancy is, however, hard to assess.
Assessment of this increase, if any, is the topic of this correspon-
dence. To make the presentation simple let us consider a power
system as an example; the assumption results in no loss of
generality.
The total loss of power, a blackout, is a major predicament to a

modem society. Consider for instance a power system (PS) con-
necting a power plant P with a town T. If, say, the overhead
wires break during a snow storm, the consequences may be
appreciable before a team of repair men succeeds in restoring the
function of the system. One way of ameliorating the situation
would be to connect P and T by two or more different transmis-
sion systems (TS's) following different routes; then it is hoped
that the same event which causes one TS to fail may spare the
other TS's. This concept is known in reliability theory as re-
dundancy. The increase in PS reliability when redundancy is used
does, however, depend heavily on the statistical relationship
among the states of the redundant TS's (and might be zero as
shown in Section V). A method, the so-called 0-transformation, is
described here by which the highest and the lowest PS reliability
may be determinedfor a system configuration using redundant TS 's
having specified reliabilities. As a by-product, we become able to
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pinpoint the statistical relationships (among the states of the
TS's) which give rise to the highest and the lowest PS's reliabili-
ties. The computational procedures are similar when the highest
PS reliability and the lowest PS reliabilitiy are determined; conse-
quently only the computation of the lowest PS reliability will be
dealt with by way of a numerical example in Section IV.

II. A LATTICE ILLUSTRATING THE POWER SYSTEM'S
RELIABILITY

A. The Lattice

Assume that P and T are connected by n redundant TS's called
xI, x2,... ,xXn each of which follows a different route through the
countryside; we will then model our PS as a parallel connection of
n TS's.

Let it also be assumed that TS numberj, x; can be in only one
of its n1 possible states (which exclude each other and together
exhaust all possibilities). Then the set x of n TS's, x-= (xl *Xn),
will be in one of n states

pn-n1 X n2 X.*XnjX ... Xnn. (1)

Clearly the state of x- may be described as a lattice point in an
n-dimensional lattice (an example with n = 3 is given below).
Some of the points illustrate "good" x--states where the power
functions satisfactorily. The remaining lattice points illustrate
"bad" x--states where the PS functions unsatisfactorily. The n-
states of the PS exclude each other and together they exhaust all
possibilities.

B. f, the n-Variate Probability Density
The PS can be in each of its pn-states with some (usually

unknown) probability. The set of n discrete probabilities can be
regarded as an n-variate probability density called f; f is not any
specific density but just the name of the typical density. The sum
of the n-probabilities is unity. f has n marginal probability
densities. They are called If=1f(x1), * *,jf= jf(xj)*. *nf
= nf(xn). jf consists of ni discrete probabilities having a sum of
unity; the set of n1 probabilities shows how likely each of the n
possible states of transmission system number j are (while disre-
garding the actual states of the other (n -1) TS's). The product
of the n marginals is called fp.f is a special f-density as it is the
multivariate density which resufts when xl, * ,xn all are statisti-
cally independent variables, i.e., the state of one TS being unre-
lated to the states of the other (n - 1) TS's, a situation which is
unrealistic in most cases. fp has the n marginals jf, j= 1,. ,n.
The important point here is that whereas we may be fairly
ignorant about f, we can make educated guesses about the n
marginals 1f,- ,- f. Using the product of the marginals fp and
the 0-transformation we could then in principle (given an im-
mense amount of computer time) compute all possible f concom-
itant with the n marginals. We will, however, concentrate on
finding f with interesting properties, e.g., in Section IV we de-
termine the very f called f, which gives the exact minimum of a
certain probability.

III. THE 0-TRANSFORMATION, A NEW FACTOTUM OF
ANALYSIS

A. The Unchanged Marginal Probability Densities
Consider two lattice points: PI = (di, * *, d... * ,dn), and P2 =

(d±+e1,... ,d1+e1, -,dn+en); the two values of x are ob-
served with probabilities 0, and 02. Let 0 be a quantity between
zero and the smaller of 01 and 02. The 0-transformation consists
of moving 0 units of probability mass from P1 to a lattice point
P3, while simultaneously moving 0 units of probability mass from
P2 to a lattice point P4; the locations of P3 and P4 are determined
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as follows. The n coordinates for P3 are obtained by using some
of the PI coordinate-values and some of the P2 coordinate-values;
xl is d, or (d, + el),x2is d2or (d2 + e2),. *,xjis dJ or (dj+ ej).
The above mentioned coordinate-values not used for P3 are used
for P4. As an illustration, consider the case n = 3; P3 could be
(dl, d2, d3+ e3) and P4would then be (d1 + el, d2+ e2, d3). The
9-transformation leaves the n marginals unchanged because the
probability of a lattice point having xj dj,jf(dj), or having
xj=dj+ eJ,jf(dJ+ej), j= 1, ,n, is unchanged.

B. A Theorem
We are concerned with joint densities f which consist of pn (1)

nonnegative discrete probabilities all of which are assumed to be
rational numbers (i.e., they are all multiples of some small
quantity q); such joint densities will be called "admissible." The
set n marginals is said to be "admissible" because all marginals
consist of nonnegative discrete probabilities. fp, the product of
the n members of an admissible set of marginals, clearly is an
admissible joint density. An admissible joint density always has
an admissible set of n marginals. An "admissible sequence of
joint densities" is a sequence of admissible joint densities, If, 2f,
f, etc., each of which is obtained from its predecessor by one
0-transformation. When both the values of pn and the small
quantity of probability mass q are specified, the number of
possible admissible joint densities obviously is bounded. The
theorem can now be stated; for a proof see [1]. Other applications
of the 0-transformation have been described elsewhere in the
literature [4] and [5].

Theorem: Let f be some discrete admissible joint density with
the marginals (,f, . ,,nf); then there exists at least one admissi-
ble sequence of joint densities which begins with fp and ends with
f, and which is a sequence of finite length.
The importance of the theorem lies in the fact that it ensures us

against the following unpleasant possibility. One could imagine
that in order to reach an optimum "admissible joint density" by
hill climbing from fp, it might be necessary to pass through
nonadmissible joint densities; the theorem tells us that this is not
so.

The theorem does not tell the hill climbing designer how to
find the multivariate density which has some particular property
in largest measure; the theorem only states that the interesting
multivariate density can be generated from fp by a finite number
of applications of the 0-transformation, each of which, changes
one admissible density to another admissible density.

C. Three Practical Questions
When using the 0-transformation the designer is faced with

three questions.
1) How should the lattice points P1 and P2 be chosen? In the

simple example, Section IV, the points are chosen by inspection
so that the desired f-density f, is obtained after only four 9-
transformations. When n is not too large all possible (PI, P2)-
combinations, C may be listed. Different (PI, P2)-values are then
selected for 9-transformations using some pseudorandom routine
which ensures that each of the C-combinations is tried from time
to time. When pn is so large that it becomes unpractical to list all
possible (P,, P2)-values, a new set of 2n coordinates d1 and
(dj + ej), j = 1, 2,* * ,n, is selected before each 9-transformation
using a random number routine.

2) How should the value of 9 be selected? Let the four proba-
bility masses at points P1, P2, P3, and P4 immediately before
9-transformation number k be k9l k92,kA3 and kA4 With the
simple example in Section IV [4] we are in a typical linear
programming situation; 9 should consequently be the smaller of
ko1 and k92 if it turns out to be beneficial to move 9-probability
mass from P1 and P2 to P3 and P4; if the effect turns out to be
detrimental instead the smaller of kA3 and kO4 should be added to

P1 and P2 and subtracted from P3 and P4. When we are not in a
linear programming situation e.g., [5] only small quantities of
probability mass should at first be moved at each 9-trans-
formation; if the effect of the transformation is beneficial the
quantity could be increased.

3) What determines that the optimum has been reached and
the algorithm is to be terminated? In the simple case where all C
possible (P,, P2 )-combinations can be listed, the answer is sim-
ple: an optimum has been reached when none of the C possible
9-transformations result in an improvement. When it is unpracti-
cal to list all possible (PI, P2)-combinations, the algorithm is
terminated when no improvement has been recorded during the
last L 9-transformations. L is a number chosen in advance by the
designer. The problem is basically one of terminating a hill
climbing procedure.

IV. AN ILLUSTRATIVE EXAMPLE
Let it be assumed that the town T obtains its power solely from

the power plant P. Three TS's connect P with T, one called Al,
runs through the valley A, the second B2 through valley B, and
the third C3 through valley C (i.e., n= 3, the lattice is three-
dimensional). At the end of the winter during which repairs are
impossible- the first TS is in one of two states: state a where it
functions, and state ai where it has failed. Likewise the_second
and the third TS can each be in one of two states b and b, c and
5, i.e., n, =n2 =n3= 2, and n= 8. From past experience we feel
reasonably sure that the three marginal probability densities have
the following values:

f(a)=09, lf(a)= 0.1;

2f(b) = 0.8, 2 f(b 0.2;
3f(c)= 0.7, 3f()= 0.3.

To supply T with power at least two of the three transmission
systems must_function, i.e., we have four "good" states (a, b, c);
(a, b, c); (a, b, c); and (a, b, 5). The question now presents itself:
given the three marginals what is then the probability of uninter-
rupted power supply to T during the winter-assuming the most
adverse statistical relationships. The answer is obtained by first
generating pf = If'2f 3f. We then perform some 9-trans-
formations with the objective of minimizing RT,

RT=f(a, b, c) +f(a, b, c) +f(a, b, c) +f(a, b, )

forf=pf,RT=0.504+0.056+0.126+0.216=0.902. As shown
in Fig. I and Table I, the absolute minimum (not some lower
bound), min{RTI=0.7 can be obtained after as little as four
9-transformations, i.e., with the specified marginals; T is supplied
with power uninterruptedly with a probability of at least 70
percent. Because the dimensionality is so low n = 3, the results
from Fig. 1 are readily illustrated by a Venn diagram (see Figs. 2
and 3); the diagrams show how f(abc) = 0.7, f(ab5c) = 0.2, and
f(dbc-) = 0.1 will add up to unity when the five other Boolian
functions have probability zero.

In the example illustrated in Fig. I we have shown how the
9-transformation may be used to pinpoint the "least favorable"
failure pattern achievable by parallel redundancy of the three
TS's. At this point the reader may rightfully object that the
worst-case situation is unnecessarily pessimistic. It is for instance
not realistic to assume that the joint probabilities of the three
states aibc, abc, and abc- all be zero, i.e., that the very situations
which should justify our use of parallel redundancy are impossi-
ble. Therefore, when 9-transformations are used to determine
worst-case system reliabilities, the designer should abstain from
transformations which result in failure patterns which clearly are
unrealistic. This may be readily achieved by putting upper and
lower bounds on the joint probabilities associated with the pn
lattice points.
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TABLE I
FOUR 0-TRANSFORMATIONS WILL CHANGE pf TO AN f-DENSITY FOR WHICH R T IS MINIMIZED

P P P P (f(P)fPf;fP = M ( ( (1 3 2 4 1 (P3; ( 2); (P4)) ( (f1); (P3); f(P2); f(P4))

(a,b,c), (a,b,c), (a,b,c), (a,b,c) (0.504; 0.216; 0.024; 0.056) => (0.560; 0.160; 0.080; 0.000)

(a,b,c), (a,bc), (a,b,c), (a,b,c) (0.126; 0.054; 0.006; 0.014) => (0.140; 0.040; 0.020; 0.000)

(a,b,c), (a,b,c), (a,b,c), (a,b,c) (0.160; 0.080; 0.020; 0.040) => (0.140; 0.100; 0.000; 0.060)

(a,b,c), (a,b,c), (a,b,c), (a,b,c) (0.560; 0.140; 0.060; 0.140) => (0.700; 0.000; 0.200; 0.000)

/<O 009Ot X q <O.o00'

,c)~~c

.926' <0.200>

O,000 00

sol
LSl.8J. 'ECO.7 L.33.

f0.700o <0.000>

Fig. 1. Three-dimensional lattice mentioned in example, Section IV. The
figures in ( ), [ * ], { *}, and K > are coordinates of eight corners, six marginal
density values, eight values of fp I and the eight f-values, respectively, ob-
tained after four 0-transformations which yield min{R T) = 0.7. Four "good"
states are indicated by circles, four "bad" states by squares. RT =0.7 is
obtained only when five joint densities are zero- an unnecessarily pessimis-
tic situation. When joint densities are bounded, more realistic R T-values will
be obtained. We notice that f(a-, b, c) =f(a, b, c) =f(a-, b, c) 0O; conse-
quently the worst case reliability is not enhanced by adding Cl because when
Cl functions, both AI and B2 already function, and under our assumptions,
this is sufficient to bring power from P to T.

Fig. 2. Venn diagram illustrating the eight possible states of the PS: abc, abc,
etc. Points enclosed by the curve illustrate the a-state. Points enclosed
by the - - curve illustrate the b-state. Points enclosed by the --- curve
illustrate the c-state. Cross-hatched area illustrates "good" states where PS
functions satisfactorily. Venn diagrams are only practical for n : 4 [4].

The highest possible value of RT, max{RT}, may likewise be
determined by modifying pf through a series of 0-transformations.

V. THE INCREASE IN RELIABILITY DUE TO REDUNDANCY
The following question now presents itself. What is the proba-

bility rT, of an uninterrupted power supply to T during the winter
if only the two TS's Al and B2 are available and both should
function? Or to pose the question differently: how much is gained
by adding C3? As before, we assume that

If(a)=0.9 1f(a) = 0.- 2f(b) = 0.8

Fig. 3. Venn diagram illustrating worst possible statistical relationships where
f(abc) = 0.7, f(abc-) = 0.2, and f(dbci) = 0.1 and RT is minimized. Cross-
hatched area illustrates min{R T} =f(abc) 0.7. Notice that five of the
areas from Fig. 2 have vanished. By trial and error we verify the minimum
value of RT, i.e., no 9-transformation can bring RT-value below 0.7.

Clearly rT = f(a, b). Assuming statistical independence, we find
that

f(a,b)=0.72 f(a,b)=0.18
f(a,b)=0.08 f(a,b)=0.02.

By adding 0 = 0.02 to f(a, b) = 0.18 and f(a-, b) = 0.08 while
subtracting 0.02 from f(a, b) = 0.72 and f(a-, b) = 0.02, we obtain
the smallest possible value of f(a, b) = min {rT} = 0.7. The reader
will recall from Section IV that also min RT}= 0.7. In other
words assuming the most adverse statistical relationships among
the states of the TS's, the probability of uninterruptedpower supply
to T is 70 percent as well when we use only Al and B2 as when we
add C3 to Al and B2! With this numerical example we have refuted
the widely held belief that use of redundancy always enhances
reliability. (The reason why the reliability does not increase when
Cl is added is of course that the numbers were so chosen that
min{f(a, b, c)} = min{f(a, b)}.) In practical cases where the
statistical relationships are less adverse we will of course gain by
adding C3; e.g., assuming statistical independence rT = 0.72 and
R = 0.902 (as calculated in Section IV). If the PS consists of only
Al and C3, the minimum reliability min{f(a, c)} is 60 percent; if
the PS consists of only B2 and C3, the minimum reliability
min{f(b, c)} is 50 percent. In the two cases the min, num
reliability is raised to min{RT}= 70 percent by adding, respec-
tively, B2 or Al; i.e., in these two cases the minimum reliability
was enhanced by adding a third TS.

VI. CONCLUSION
Quite often a designer is faced with a problem the solution of

which requires knowledge of some n-variable probability density
function f. We are concerned with the situation where the de-
signer has access only to the n marginals 1f, 2 f, * * *,nf rather than
f. To solve this problem the designer must answer the fundamen-
tal question: what n-variable densities are concomitant with a set
of n marginals? This problem can be solved only with the help of
a new factotum of analysis, the 9-transformation. In this paper
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the 0-transformation is used to compute the minimum reliability
for a redundant system.
By way of a numerical example we show that applying re-

dundancy to a system does not necessarily increase its reliability.
The more traditional mlethods of computing reliability figures

have been discussed elsewhere in the literature [3], [7], [8], [9]
and [10].
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