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Abstract-There exists a class of iterative local image smoothing tech-
niques in which a neighborhood of each pixel is examined, and the pixel is
replaced by an average of a selected set of its neighbors chosen so as to
make it likely that they belong to the same region as the pixel, e.g., on the
basis of their resemblance to it. Thus these methods choose the neighbors
to be averaged on the basis of information local to the neighborhood. A
more powerful approach in which the neighbors are chosen based on global
information derived from the histogram of the image is described. This
approach attempts to choose neighbors that belong to the same histogram
peak as the given pixel, but are more typical of that peak. Smoothing using
this approach gives dramatically better results than smoothing based only
on local information in cases where the noise in a region belongs to the
same histogram peak as the region's mean.

I. INTRODUCTION

There exists a class of iterative local image smoothing tech-
niques in which a neighborhood of each pixel is examined, and
the pixel is replaced by an average of a selected set of its
neighbors, chosen so as to make it likely that they belong to the
same region of the image as the pixel. For example, one can
average the pixel with those k of its neighbors (for some fixed k)
which are closest to it in gray level, or with those neighbors
whose gray level gradient magnitudes are lower than that of the
pixel itself[1]; or one can examine a set of subneighborhoods and
use the average of the one that has least variable gray level [2], [3],
that has the strongest contrast with its complement [4], or that is
approximated by a polynomial that most closely fits the pixel
itself [5].

All of those methods choose the neighbors that are averaged on
the basis of information local to the neighborhood. This note
describes a more powerful approach in which the neighbors are
chosen based on global information derived from the histogram
of the image. This approach attempts to choose neighbors that
belong to the same histogram peak (i.e., to the same pixel
subpopulation) as the given pixel but are more typical of that
peak. As we shall see, smoothing using this approach gives
dramatically better results than smoothing based only on local
information, provided that the noise in a region does not belong
to a different histogram peak than the region's mean. All of the
methods described below used 3 X 3 neighborhoods.

II. METHODS

The simplest of our histogram-based methods uses those
neighbors whose probabilities, as estimated from the histogram,
are higher than that of the given pixel. We will refer to this
scheme as methodI. A related idea was introduced in [4], namely,
to average each pixel with those k of its neighbors, for some fixed
k, that have the highest probabilities as estimated from the
histogram. However this scheme did not work as well as meth-
od I.

If the neighbors of a pixel always belong to the same histogram
peak as the given pixel or to a valley adjacent to that peak, then
method I will tend to move the pixel higher up on that peak so
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that the peak will become sharper. (In fact, as we shall see, the
peak will become a spike after a few iterations.) On the other
hand, if neighbors can belong to other peaks and have higher
prohahilities than the pixel itself, method I will not work prop-
erly. For example, if the pixel belongs to a small peak and has
neighbors belonging to a larger peak (e.g., a pixel on the border
of a small region, adjacent to a large region), it may shift toward
the large peak, causing the small region to shrink. This would be
especially likely in the case where the two regions give rise to a
peak and a shoulder rather than two peaks with a valley between
them.
MethodII is designed to overcome these potential problems by

using a neighbor only if there is no significant concavity in the
histogram between the pixel and the neighbor. (We also still
require the neighbor to have higher probability than the pixel.)
The presence of a concavity indicates that the pixel and the
neighbor belong to two different peaks or to a peak and a
shoulder, and we do not want such neighbors to influence each
other.
To define method II more precisely, let Z and Z' be the gray

levels of the pixel and the neighbor, let p and p' be their
probabilities (proportional to their histogram bar heights), and
let s'= (p- p')/I Z' j>0. LetZ" be any gray level be-
tween Z and Z', let p" be its probability, and lets" (p" p)/
Z'- Z . If there exists a Z" such that s" <s'/k, where k is a

parameter, we do not use the neighbor Z'. Evidently the existence
of such a Z" implies that the histogram has a concavity between
Z and Z'. The higher k, the less likely that such a Z" exists (the
deeper the concavity must be) and the more likely we are to use
the neighbor Z'.

In both methods I and II, it is desirable to smooth the
histogram (at each iteration) before making decisions about the
neighbors. This makes it less likely that the results will be
influenced by fluctuations in the histogram due to quantization
noise.
Method II assures, in principle, that a pixel will not get

averaged with neighbors that do not belong to the same histo-
gram peak. This should prevent small regions from shrinking and
so is an improvement over methodI. On the other hand, suppose
that there are isolated noise pixels in a region that come from a
different histogram peak (not the same one to which the region
belongs); then such a pixel will be completely unaffected by
method II, since all of its neighbors belong to a different peak
than it does! Similarly, in the case of method I, suppose that an
isolated noise pixel coming from a high peak is found in a region
belonging to a low peak; then that pixel will be unaffected, and
even worse, it will influence its neighbors since it is more proba-
ble than they are. Thus we see that methods I and II are reliable
only if the noise in a region belongs to the same histogram peak
as the region.

These observations imply that certain simple types of noise will
not be removed by our methods. Perhaps the simplest case is that
of salt-and-pepper noise in a binary image. Here the histogram
consists of two spikes, and method II will have no effect at all
since there is a deep concavity between the spikes. Method I, on
the other hand, will cause the more probable color (black or
white) to expand into the less probable color.

In spite of this limitation our methods seem to be extremely
powerful in practice, as we shall see in the next section. In
particular, method II has no effect on noise pixels that belong to
a different peak than the surrounding region, but it still smooths
the rest of the region so that its peak becomes a spike. It is then
very easy to detect the noise pixels and remove them by simple
methods, e.g., replace the pixel by the mean of its neighbors if
(nearly) all of those neighbors differ from it by an above-threshold
amount [6].
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III. EXPERIMENTS

The methods were first tested on the three images shown in
Fig. I(a); they are an infrared image of a tank, a portion of a

chromosome spread, and a portion of a blood smear showing a
white blood cell. The histograms of these images are shown in
Fig. I(b).
The results for these three images are shown in Fig. 2, using the

following methods.

Iterations of
Figure Method k Histogram Smoothing

2 I - 0
3 II 1,2,4 0
4 II 10,100 0
5 II 1,2,4 1
6 II 10,100 1
7 II 1,2,4 2
8 II 10,100 2

In each case the result of six iterations of the method are shown.
Histogram smoothing was done by taking a simple running
average of three consecutive histogram bins. Part (a) of each
figure shows the smoothed images, and part (b) shows their
histograms. Note that the histograms have essentially become

small sets of spikes, confirming that the smoothing was extremely
effective. For comparison, Fig. 9 shows the results of six itera-
tions of median filtering applied to the images; the histogram
peaks have been sharpened but have not become spike-like.
The following comments may be made about the methods used

based on these results. Method I yields spikes corresponding to
the major peaks (or shoulders in the tank example) in the
histogram, but it causes some shrinkage in small regions (see
especially the chromosome example). Method II yields more
spikes unless the histogram is smoothed, but this may not always
be undesirable since it may reflect subpopulations of pixels
within the regions. Both smoothing the histogram and increasing
k tend to reduce the number of spikes (as should be expected),
but small regions still do not shrink.

Fig. 10- 14 show similar results for a portion of a Landsat
image which was also used in [4]. The original image is shown in
Fig. 10, while Figs. I I -14 show the following smoothing results.

Iterations of
Figure Method k Histogram Smoothing

II I - 0
12 II 1,4,10,100 0
13 II 1,4,10,100 1
14 II 1,4,10,100 2
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The conclusions suggested by Figs. 2-8 are supported by these
results as well; note especially the shrinkage of the thin dark
regions under method I but not under method II even for high
values of k. Evidently method II is preferable even though it has
a somewhat greater computational cost.

IV. CONCLUDING REMARKs
This correspondence has investigated image smoothing by iter-

ative local averaging of each pixel with those of its neighbors that
have higher histogram values and belong to the same histogram
peak. Even though only a few iterations were performed using a
small neighborhood (3 X 3), the smoothing was extremely effec-
tive on a variety of images, turning their histograms into small
sets of spikes. The approach works only on noise that belongs to
the same histogram peak as the region it lies in; noise belonging
to other peaks will be unaffected. However once the rest of the
region has become smooth, such noise can easily be detected and
deleted by conventional methods.
The computational cost of this approach is not very high. By

examining the histogram we can define, for each gray level, the
qet of gray levels with which averaging is permitted; this lookup
table can then be used when each pixel is processed. In any case
the power of the histogram-based approach makes it a serious
contender for use in practical image smoothing applications and
illustrates the advantages of introducing global information into
local image processing operations.

A Note on Invariant Moments in Image Processing
TIEN C. HSIA, SENIOR MEMBER, IEEE

Abstract-A number of observations on the application of moments to
the classification and matdcng of digital images are presented. Supported
by experimental data, comments were made on the effects of contrast
change,- correlation, and ranking of invariant moments.

INTRODUCTION
The method of invariant moments is a very useful tool for

extracting features from two-dimensional images which are in-
variant with respect to the images position, size, and orientation.
Applications of invariant moments method to character recogni-
tion, image classification and scene matching have been reported
with varying degrees of success [I]-[6]. Examination of these
published results showed that further studies are needed in order
to enhance our understanding and effective use of this method.
The objective of this correspondence is to present a number of
observations based on some experimental data obtained from
digital images.

There are a number of invariant moments which can be com-
puted from a given two-dimensional image intensity function
f(x, y). Following are the first seven moments which are com-
monly used for scene matching [6]

q)(1) = '120 + '1O2

+(2) = ('120 - '102) + 4 12

=(3) ('130 - 3'112)2 + (3N121 - 7103)

4(4) =(7130 + '112) +(Q21 + 103)2

0(5) =( 130 - 3'112)('130 + 7112)[(7130 + '112) - 3(7121 + '103)2]

+(37121 -71o3)('121 + 7103;[3(7130 + '112) -(7121 + 7103)2]

4,(6) =(120 - '1o2)[(7130 + '112) -('121 + '103)2]

+47111(7130 + '112)('121 + '103)

4(7) =(3t121 -1O3)(7130 + 7112)[(0130 + '112)2 - 3(7121 + '103)2]

(7130- 3'112)(q121 + '103)[3(n13o + '112)-(7121 + 7103)2]
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