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Image Segmentation by Texture Using Pyramid Node
' Linking
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Abstract—In a “pyramid” of successively reduced-resolution versions of
an image, by linking nodes representing image blocks to nodes representing
nearby larger blocks that most closely resemble them, trees can be con-
structed (defined by the links) representing homogeneous parts of the input
image. This approach is applied to segmenting an image on the basis of
texture. It is started from an initial decomposition of the image into small
blocl.s (e.g., 8 by 8); a textural property is computed for each block,
yielding an array of property values; a “pyramid” is built of reduced-
resolution versions of this array; and the node linking process is applied to
this pyramid. The resulting trees define a segmentation of the original
image into unions of the small blocks. This segmentation is similar to that
obtained by minimum-error thresholding of the textural property values.
Substantially better results are obtained when this “bottom-up” block
linking process is preceded by a “top-down” process in which large
homogeneous blocks are linked to all of their subblocks; the bottom-up
linking is then used only for the blocks that were not linked by the
top-down process.

I. INTRODUCTION

Segmentation of an image into differently textured regions is a
relatively difficult problem [1]. In order to distinguish reliably
between two textures, we must examine relatively large samples
of them, i.e., relatively large blocks of the image. But a large
block is unlikely to be entirely contained in a homogeneously
textured region, and it becomes difficult to correctly determine
the boundaries between regions.

Chen and Pavlidis [2] have investigated a solution to the block
size problem based on the use of a “pyramid” of successively
reduced-resolution versions of the given image. If the image is 2"
by 2", the successive layers of the pyramid are, e.g., 2" "' by 2",
2""2 by 2"72...2 by 2, 1 by 1. The elements of the array at
layer k (with the original image being layer 0) thus represent
image blocks of size 2* by 2¥, and the size of the array is 2"~ * by
2"~ We assume here, for simplicity, that the elements in each
layer correspond to nonoverlapping 2 by 2 blocks of elements in
the layer below. (Other ways of constructing pyramids, based on
overlapping blocks, are also possible, as will be seen below.) Thus
each 2 by 2* block is the union of four 2¥~! by 27! blocks,
which are its four quadrants. For each block we can compute any
desired textural property, or a set of such properties; see [1] for a
review of textural properties. We can now define a top-down
segmentation of the image into unions of blocks, based on the
values of these properties, as follows. Starting from the top of the
pyramid (a single node corresponding to the entire 2" by 2”
image), we compare the property value(s) for each block with the
values for its quadrants. If the values are sufficiently similar, we
leave the block intact; if not, we split it into quadrants and repeat
the process for each quadrant. When this process is complete,
each block that remains unsplit should be contained in a homoge-
neously textured region. Moreover, the maximal connected sets of
blocks that have similar textural properties should correspond to
the homogeneously textured connected components of the image.
Note that we can use a special case of this method to segment an
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image into connected regions of different average gray level by
simply using average gray level as the “textural property.”

Recently, a different pyramid-based method of segmenting an
image was proposed by Burt er al. [3]-[5]. It makes use of a
pyramid defined by overlapping blocks, e.g., the elements at each
level correspond to 4 by 4 blocks of elements at the level below,
where these blocks overlap by 50 percent both horizontally and
vertically; the levels thus shrink by powers of 2 just as in the
nonoverlapped case. Thus an element of level k£ has 16 “sons” at
level k£ — 1, and it is easily verified that this implies that an
element at level kK — 1 has four “fathers” at level k. Initially, we
associate property values with the elements at each level by
simple averaging the values of the 16 “underlying” elements at
the level below. We then define “links” between elements at
successive levels based on the similarity of their values; e.g. [3],
we link each element to that one of its four “fathers” which is
most similar to it. (For variations on this idea see [4], [5].) We
now recompute each element’s value by averaging the values of
only those of its sons that are linked to it (if any). This causes the
similarities to change, so we may need to change some of the
links; we then recompute the values again and repeat the process.
The links tend to stabilize after a few iterations. If we trace them
up to a level near the top of the pyramid (e.g., the 2 by 2 level),
they define trees of linked image blocks. The sets of pixels at the
leaves of such a tree constitute a homogeneous subpopulation of
image pixels (but not necessarily a connected region!), so that the
trees define a segmentation of the image into (at most four)
subsets.

In the experiments described in [3]-[5], the property used was
simply (average) gray level, so that the images were segmented
into subsets having different average gray levels. This paper
investigates a generalization of the “pyramid linking” approach
of [3]-[5] which makes use of textural properties. Since such
properties are not meaningful for single pixels, we begin with a
fixed partition of the image into small blocks (e.g., 8 by 8), and
compute a textural property for each block; this yields a 2" * by
2"73 array of property values, which we use as input to the
pyramid linking process. The trees defined by pyramid linking
thus have 8 by 8 blocks, rather than single pixels, as their leaves,
and the original image is segmented into unions of such blocks.

Since textural properties measured on 8 by 8 blocks are quite
noisy, the pyramid linking process will not always yield a seg-
mentation into the desired regions; for example, a block near the
border of a region whose property value is close to that of the
neighboring region may become linked to that region, and clus-
ters of nearby blocks interior to a region whose property values
differ from that of the region may support one another and
become linked to a different subtree. In [6] it was found that
smoothing the array of textural property values, e.g., by median
filtering, greatly improves texture classification performance; note
that a process such as median filtering tends to smooth the values
within a homogeneous region without blurring them across region
boundaries. Property value smoothing is also used in this corre-
spondence to produce more reliable values, thus improving the
results of the linking process.

Considerable further improvement is obtain by combining the
“bottom-up” linking process described above with a “top-down”
process similar to that used by Chen and Pavlidis. Here blocks
Jjudged to be homogeneous are linked to all of their subblocks
(i.e., the links are created top down), and bottom-up linking is
used only for those blocks that are left unlinked by the top-down
process. This process will be described in further detail in Section
V.

In Sections III and IV of this correspondence, the pyramid
linking approach is applied to the two 512 by 512 test images
shown in Fig. 1. These images are composed of the geological
terrain textures used in earlier studies of texture classification [6],
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(b)
Test images.

Fig. 1.

[7); Fig. 1(a) is Mississippian limestone and shale above the 45°
diagonal and lower Pennsylvanian shale below it (labeled M /L),
while Fig. 1(b) is lower Pennsylvanian shale above and Pennsyl-
vanian sandstone and shale below (labeled L /P).

II. TEXTURE FEATURES AND FEATURE ARRAYS

The texture feature used was the second-order gray level statis-
tic “CONTRAST,” which is the moment of inertia of the cooc-
currence matrix about its main diagonal [1]. Cooccurrences were
tabulated for a 1-pixel displacement in the horizontal direction.
This feature was chosen because it performed quite well in the
texture feature studies of Weszka ez al. [7], and it is also computa-
tionally cheap, since it can be computed from a difference
histogram rather than from a cooccurrence matrix [7]. Many
other texture features could have been used, but we restricted
ourselves to one feature because our primary interest was in the
relative performance of pyramid linking schemes in comparison
with standard methods.

The features were computed for nonoverlapping small windows
(blocks) of the image. The sizes of these windows were 8 by 8 or
16 by 16 pixels. The size of the resulting feature array was 64 by
64 or 32 by 32. For example, if we compute the features for a 512
by 512 image in 8 by 8 blocks, the size of the feature array is 64
by 64. In the computation of these “CONTRAST” feature arrays
we used a fast algorithm which reduced the computation time
drastically compared to the conventional method. Instead of

(a)

(b)

(©

Fig. 2. (a) Feature arrays using 16 by 16 windows (after 0-5 iterations of
median filtering). (b) Pyramid segmentation results. (¢) Minimum error
thresholding results.

tabulating the cooccurence matrices for each of the 4096 (or
1024) blocks and deriving the “CONTRAST” features from these
matrices, we derived the features from a difference histogram (in
effect) by simply summing the squared differences of those pairs
of pixels which had the required displacement. With this ap-
proach the whole feature array was computed during one image
scan.

Prior to pyramid segmentation, the feature values were scaled
to make them suitable for the pyramid algorithms, which were
designed to operate on input data in the range 0-63. Also,
because texture features measured over small windows are unreli-
able, smoothing was applied to the feature arrays. The smoothing
method used was median filtering (value replaced by the median
of the feature values in the neighborhood), which was found in [6]
to be effective for texture feature value smoothing. In the present
studies we applied 0-5 iterations of median filtering (using a 3 by
3 pixel neighborhood) to the feature arrays and then we scaled
these arrays linearly to have values ranging between zero and 63.

III. EXPERIMENTS USING ITERATIVE BOTTOM-UP LINKING

In all segmentation experiments, we used ten iterations in the
pyramid node linking computations, although in most cases the
segmentation converged earlier to a stable state. In the pyramid
initialization, the methods with unweighted averaging of 16 or 4
sons were used. Forced linking was performed on one pyramid
level at a time, and the segmentation was forced to give just two
classes. These and other modifications of the original pyramid
process are described in [4] and [5].

The effect of median filtering prior to segmentation is il-
lustrated in Fig. 2 for the image M/L. Figure 2(a) shows the
median filtered 32 by 32 pixel feature arrays after 05 iterations
of median filtering. The pyramid segmentation results for these
six cases are presented in Fig. 2(b). For comparison, Fig. 2(c)
shows the corresponding segmentations using a minimum error
thresholding method (the threshold that gives the minimum num-
ber of misclassified pixels is used to segment the feature array
into two classes). It can be seen that the median filtering effec-
tively reduces the error rate and that the results for these two
segmentation methods (pyramid node linking and minimum-error
thresholding) are quite similar. The selection of the minimum
error threshold is very difficult for the images with zero to one
iterations of median filtering, because the feature value histo-
grams are not bimodal in these cases.

Figs. 3 and 4 illustrate the use of 4 and 16 sons in pyramid
initialization for the 64 by 64 feature arrays M /L and L /P. Figs.
3(a) and 4(a) are the median filtered arrays after five iterations,
and 3(d) and 4(d) are after three iterations of median filtering. In
Fig. 3(b), 4(b), 3(e), and 4(e) are the corresponding segmentations
using 4-son initialization, while in Figs. 3(c), 4(c), 3(f), and 4(f)
are the results for 16 sons. 16-son initialization gave slightly
better results for these noisy feature arrays, while for less noisy
gray level images the 4-son initialization appears to be preferable
[4].

To make the evaluation of the results easier, error rates were
computed for each case. The error rate is defined to be the
percentage of misclassifications for the unmixed windows in the .
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Fig. 3. Pyramid segmentation results for image in Fig. 1(a) using 8 by 8

windows. (a) (d) Feature array after 5(3) iterations of median filtering. (b) (e)
Pyramid segmentations using 4-son initialization. (c) (f) Same using 16-son
initialization.

(a) (b) (©)
(d) (e) (H

Fig. 4. Analogous to Fig. 3 for image in Fig. 1(b).

original image [6]. The error rate is based on the unmixed
windows since the mixed windows (on the diagonal) always have
50 percent error.

In Table I are presented the error rates for 64 by 64 feature
arrays derived from M/L and L/P and for a 32 by 32 array
derived from M /L using 16 by 16 windows. In each case 0-5
iterations of median filtering were used before segmentation.
Error rates for minimum error thresholding, for pyramid segmen-
tation with 16-son initialization, and for the top-down /bottom-up
linking method (described in Section IV) are shown. It can be
seen that the error rates for bottom-up pyramid segmentation are
very close to the error rates for minimum error thresholding. The
minimum error thresholds were found empirically by looking for
a threshold which gives the minimum error rate. It was found,
however, that these thresholds can be derived automatically with
fairly good accuracy by Gaussian filtering to feature value histo-
grams obtained from properly selected training samples.

To reduce the effects of some very high feature values in some
of the feature arrays, experiments were conducted in which the
feature values were truncated by setting the values above a
threshold equal to the value of the threshold. After this, the
arrays were again linearly scaled. The results were slightly better
using this method. This suggests that it is desirable to use some
kind of nonlinear scaling of features, if there are feature values
that are too dominating even after median filtering. It was also
found that reduction of the gray level range of the original image
prior to feature value computation did not have much effect on
the segmentation results. When 32 or 16 gray levels were used
instead of 64, the error rates were only slightly higher.

IV. EXPERIMENTS USING NONITERATIVE
TorP-DOWN /BOTTOM-UP LINKING

The top-down phase of this new linking method resembles the
split-and-merge algorithm used by Chen and Pavlidis in [9]. But
instead of using a quadtree data structure, split-and-link opera-
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tions are done in the pyramid structure. The following steps are
used in this segmentation approach.

1) Initialize the node values of the pyramid by block averaging
of each node’s four sons.

2) Start linking at a specified level k. Find the minimum and
maximum values of each node’s four sons (at level £ — 1). If the
difference between the maximum and minimum values is less
than a selected threshold, link all four sons to their father, and go
to level kK — 1. At this level, link all four sons (at level kK — 2) to
those nodes which are linked to their fathers, i.e., those which
belong to uniform blocks at level k. For the remaining nodes,
apply the same test that was applied at level k, and link a node’s
sons to it if their range of values is below the threshold.

3) Link each unlinked node to one of its four fathers (closest
in value). Do this at all levels starting from level 0. This process is
done only once, rather than being iterated as in [3]-[5]. The
resulting tree defines the final segmentation of the image.

For all test images the top-down linking was done from level 4
to level 1. The selection of the threshold value for block uniform-
ity testing was done empirically. The same threshold value was
used at each level. Because the error rates seemed not to be
sensitive to changes in this threshold value, it should not be
difficult to find the value automatically.

The error rates obtained by the top-down/bottom-up linking
method are also shown in Table I. It can be seen that these error
rates are much lower than the results for bottom-up linking and
for minimum error thresholding. The results are quite good even
without using median filtering.

Fig. 5 shows the best results for the 64 by 64 feature arrays.
Fig. 5(a) and (b) show the M/L and L /P feature arrays after five
iterations of median filtering, and Fig. 5(c) and (d) show the
corresponding segmentation results. Fig. 6 shows the segmenta-
tion results for the same feature arrays without median filtering.

Fig. 7 shows the results for the 32 by 32 feature array M /L
(features computed in 16 by 16 blocks). Fig. 7(a) shows the
feature arrays after 0-5 iterations and Fig. 7(b) shows the seg-
mentation results.

The results obtained by top-down /bottom-up linking are very
good. It is evident that in order to get good segmentation results
for texture images, we should use global information obtained
from the upper pyramid levels to guide the segmentation at lower
levels. If we use only bottom-up linking, the feature arrays are
too noisy for good segmentation.

Many variations on the top-down/bottom-up linking method
are possible, but the exploration of these variations is beyond the
scope of the present study. Further studies in this area are
planned.

V. CONCLUSION

This study shows that the pyramid node linking method can be
successfully applied to segmentation by texture. By using iterative
feature value smoothing prior to segmentation, quite small
windows can be used for texture feature computation. This means
that the dividing line between two texture types can be found
with reasonable accuracy.

The accuracy of segmentation obtained by the basic bottom-up
linking approach is comparable to the accuracy obtained by
minimum error thresholding of the feature array. The advantage
is that we need not look at the feature value histogram. Determin-
ing the appropriate threshold (or thresholds) from the histogram
is often very difficult.

A great improvement in segmentation accuracy can be ob-
tained by using a top-down/bottom-up linking method. In this
approach, global information obtained from upper pyramid levels
is used to locate large homogeneous areas, while more accurate
boundary information about these areas is obtained by linking
nodes on lower levels to the nodes representing these major areas.

ACKNOWLEDGMENT

The help of D. Lloyd Chesley in preparing this correspondence
is, gratefully acknowledged.



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-11, NO. 12, DECEMBER 1981

825

TABLEI
ERROR RATES
(PERCENT)
Iterations of ~ Minimum Error Bottom-Up Bidirectional
Image Median Filtering  Thresholding Linking Linking
0 394 37.8 18.0
1 30.7 27.7 10.7
M( 5 2 26:5 24.0 8.6
(Fig. 1(a)) 3 243 194 8.5
4 228 2317 8.3
5 220 21.0 8.0
0 257 25.0 2.9
1 10.7 9.9 22
ol .P 2 6.8 52 22
(Fig. 1(b)) 3 52 46 1.6
4 43 6.3 20
> 35 33 1.6
M/L 0 337 36.0 14.7
: 1 19.1 19.8 55
(Fig. 1(a)) : 13.7 11 6.0
using 16 by 16 3 10.8 12:2 52
windows - 8.8 8.0 2.6
o 1. 6.4 2.8
(a) (b)
(b)
Fig. 7. Bidirectional results using 16 by 16 windows and 0-5 iterations of

(¢) (d)

Fig. 5.
(b) after five iterations of median filtering. (¢) (d) Segmentations.

(b)

@
Fig. 6. Analogous to Fig. 5 but without median filtering.

©

Bidirectional linking results. (a) (b) Feature arrays for Fig. 1(a) and

(1
[2]

3]

(4]

(5]

(6]

(7

median filtering. (a) Feature arrays. (b) Segmentations.
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