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dence has been to examine some sources of confusion that arise
in the practical uses of such relations and to show how the
logical subtleties giving rise to the confusion may be dealt with
properly. These subtleties occur over and over again in real-
world model building and a selfconscious awareness of them is
essential to the practice of good science in practical applications.
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A Convexity Testing Method for Cluster Analysis
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Abstract-The theory of convexity is used to develop a new mode
detecdon procedure in an unsupervised context. The modes are detected
by testng the convexity of the unknown underlying probability density
function. The procedure Is based on the analysis of the variations of the
mean probability density defined over expanding observation domains of
the pattern space. The estimates of the modes are then used to obtain
separating surfaces which partition the data set into unimodal subsets. The
resulting algorithm is governed by only one parameter, requires no initial
classification, and also determines the number of clusters. Its perfor-
mances are tested with artificially generated sets of data. The results
corroborate the ability of the algorithm to identify clusters of various
shapes and sizes in a very short computation time.

I. INTRODUCTION
The last ten years have witnessed extensive activity in unsu-

pervised learning procedures for the design of automatic classi-
fiers [1], [2]. Many cluster detection algorithms have been devel-
oped based on the fundamental assumption that the patterns are
drawn from a multimodal probability density function, each
mode corresponding to one cluster. In this kind of approach, the
discovery of the modes of the underlying distribution can be
considered as the key problem.

Intuitively, the notion of convexity seems well-suited for
cluster analysis because, as is shown later, the modes can be
characterized by the convexity of the underlying probability
density function. Aware of the fact that each new method offers
additional useful information about the structure and the
peculiarities of the data, the authors have been led to apply the
properties of convex functions to cluster analysis.
A new mode seeking procedure is proposed under the assump-

tion that the only information concerning the distribution is that
which can be inferred from the input patterns. The procedure
makes use of the notion of mean probability density (MPD)
determined within expanding observation domains. The MPD is
considered as a function of the size of the observation domain
within which it is computed. The analysis of the variations of
this function for growing domains centered at the samples gives
pertinent information about the local convexity of the underly-
ing probability density function (pdf). An aggregation procedure
is then developed to cluster the samples where the underlying
pdf is shown to be convex and which belong to the same class.
A formal statement of the method as well as proofs of relevant

properties of the mean probability density for a specific class of
domains are presented in Section II. These properties are used in
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Section III to develop the clustering algorithm. The mode seek-
ing procedure finds subsets of samples which can be considered
as the nuclei of the different classes. However, the procedure
does not actually classify all the data. All samples left over can
be assigned to their appropriate class by means of a classical
supervised technique.

Finally the method is applied in Section IV to three artificially
generated sets of data. Computation time is also given in relation
to the dimensionality of the data.

II. MODE SEPARATION
By measuring a number F of features, a pattern of a given set

r of N elements can be represented by a point P of an Euclidian
space EF. It is assumed that one has no information about the
set F other than these N multidimensional observations.
Many methods have been proposed to estimate a continuous

probability density function from the input patterns. The para-
metric approach is based on the assumption that the form of the
underlying density function is known [3].
When the patterns are not assumed to follow any parametric

density, nonparametric procedures can be used to estimate the
unknown distribution [41, [5].

Considering the shape of the probability density function
estimated either by parametric or by nonparametric methods,
clusters can be characterized by the convexity of the underlying
density function. Clusters are no longer considered as local
concentrations of patterns. They are now considered in terms of
convexity.

Based on this property of convexity a mode seeking procedure
is developed, using observation domains as defined below.

Definition of the Observation Domains (Fig. 1)
Let Dr be a convex reference domain in EF, symmetrical with

respect to its center and bounded by a hypersurface Sr. A family
of domains denoted D(P,a) homothetic to the reference domain
D, centered at P is associated to each point P of EF. The
homothety is defined by its center P and a positive ratio a.
Each domain D(P,a) is referred to as an observation domain

in the following and its boundary is denoted S(P, a).

Definition of the Mean Probability Density (MPD)
Let us consider a probability density function f(X) defined at

any point X of EF. The function f(X) can be considered as mass
density. Thus, the probability for a point X to fall within the
observation domain D(P,a) can be written as [6]:

mass{D(P,a)}=Pr{X ED(P, a)}= f(X)dX.
D(P,MO)

(1)

From the above, the mean probability density p{D(P, a)) can
be defined as the ratio of the probability mass to the volume of
the domain in which it was determined;

D(P a)) mass t D(P, a)}p{D(P,a)}vol{tD(P,a))} (2)

The fundamental property of the MPD which is used for
mode detection is given by the following theorem, where
p{D(P,a)) is considered as a function of the parameter a.

Fundamental Theorem
Let R be a region of the pattern space EF in which the

probability density function f(X) is convex. Then, the MPD
p{D(P, a)) determined within the observation domain D(P, a) is
an upper bounded decreasing function of a, for nonnegative a
such that D(P, a) c R.
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Fig. 1. Family of hypercubic observation domains in a 3-dimensional
pattern space.

Similarly, if the probability function is concave in the region
R, then the MPD p{D(P,a)} is, under the same conditions, a

lower bounded increasing function of a.

A proof of this theorem is given in the Appendix.

Basis of the Mode Seeking Procedure

To each point P of the pattern space is associated an expand-
ing observation domain D(P,a) over which the MPD is com-

puted for positive ascending values of a, a starting from zero.

Let us assume that the point P does not stand on a boundary
between a convex region and a concave region of the probability
density function f(X). Thus, there exists a neighborhood Dp of
point P where the convexity of f(X) is constant. In these
conditions, there exists an ao > 0 such that

D(P, a) C Dp, if 0 <a <ao.
Considering the fundamental theorem, we can conclude that if

the MPD determiner within the observation domains D(P,a) is
a descending function of a for 0 < a < ao then f(X) is convex in
the neighborhood D(P,ao) of P. Otherwise it is concave.

Hence the study of the variations of the MPD associated with
an expanding observation domain provides the basis for a test of
convexity. It is now theoretically possible to know the convexity
of an unknown probability density function in the neighborhood
of any point of the pattern space and consequently to detect the
modes.

Clusters are then obtained by groupings of convex neighbor-
hoods that are not separated by concave neighborhoods. By
convex or concave neighborhoods, we mean neighborhoods
wherein the pdf is estimated convex or concave.

III. THE COMPUTER-ORIENTED CLUSTERING ALGORITHM

Let the given data set F consist of N data points Xi, each
denoted by the vector:

XiA = (Xi,1Xi2,--,XiF)

where i = 1,2, - * , N, and T indicates the transpose.
The data set is first normalized such that the data points lie

within an hypercubic region of side length one.
It must be noted that the cluster separability will be in-

fluenced by this preliminary transformation. However, the study
of more sophisticated transformations and the subsequent im-
provement of class separability falls outside the scope of this
correspondence.
The selected observation domains are hypercubes centered at

the data points. The choice of hypercubes is based on computa-
tion time considerations. As an example, if the reference domain
Dr is an hypersphere, then the tests of convexity require the
calculation of euclidean distances. On the other hand, if the
reference domain Dr is an hypercube, the tests require only
comparisons between coordinates and this procedure is faster
and simpler than the preceeding technique. From a practical
point of view, the direction of variations of the MPD for an
observation domain increasing around Xi is determined by
estimating the MPD within two hypercubic neighborhoods of Xi,
denoted D1(Xi) and D2(Xi) centered at Xi, respectively of volume
VI and V2, with V2 > VI.
Let k1 and k2 denote the number of samples falling respec-

tively in DI(Xi) and D2(Xi). The estimated p(D1(Xi)) and
p{D2(Xi)} of the MPD within DI(Xi) and D2(Xi) are given by

k, k~~~~~~~~2ptD (X ) ) =

V and A({D2(Xi)) V2

If D{DI(Xi)} is greater than A{D2(X )}, the pdf is estimated
convex in the neighborhood DI(Xi) of Xi. Otherwise, the pdf is
estimated concave in this neighborhood.
We have chosen a k-nearest neighbor procedure as described

in [7] to estimate the MPD in DI(Xi). The hypercubic domain
DI(Xi) is grown until it encloses k, neighbors of X,, where
kl=ko0VN. Then the homothetic domain D2(X,) is adjusted
such as V2 = X. V1 (choosing X = 2F has led to good results).
Once all the tests of convexity have been achieved, the clusters

are generated by grouping the overlapping neighborhoods in
which the pdf has been shown to be convex. Two neighborhoods
are assigned to the same cluster if they have at least one
common sample.
When this aggregation procedure is completed, all points

belonging to convex regions can be considered as the nuclei of
the classes for the classification of the remaining unassigned
samples.

IV. EXPERIMENTAL RESULTS

The performance of the algorithm depends to a large extent
on the choice of the parameter ko which controls the number of
samples to be captured by the observations domains D1(Xi). A
priori, without any additional information, any choice of ko is as
good as any other. However this parameter can be considered as
a smoothing parameter. The greater ko, the less the procedure is
sensitive to small variations of convexity of the pdf. Choosing
this kind of parameter in the middle of the largest range where
the number of detected modes remains constant has been shown
to be a good procedure to optimize a number of algorithms [8].
The performances of the present algorithm are tested on three

artificially generated sets of data similar to those in [9].
Experiment 1: A hundred pseudorandom samples are taken

from each of the following three bivariate Gaussian distributions
(M, denotes the mean and 1i the covariance matrix for distribu-
tion i) (Fig. 2(a));

M1=[° °1T M2=[0 31T M3=[3 OIT
zI21= 34o=
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Experiment 2: The algorithm was applied to the set of non-
spherical bivariate data of the Fig. 2(b). This set consists of 155
samples.

o Experiment 3: The method was tested on a strongly nonlin-
early separable set of 480 samples shown in Fig. 2(c).

Figs. 2(a), 2(b), and 2(c) show for each set of data, the nuclei
of the classes detected by the algorithm. Note that, to speed up
the procedure, the convexity test is not performed systematically

0 around each sample. In fact, experiment show that testing the
convexity only around samples which have not previously been
shown to belong to convex neighborhoods leads to good results.

0 , . Fig. 3 indicates the algorithm's computation time as a func-
O . tion of both the sample size and the dimensionality of the data

, ' (all simulations were performed on a PDP 11-34 computer). For
° * 0 each experiment the samples are taken from three spherical

0 ' normal equiprobable distributions with mean vectors MI, M2, M3
and equal covariance matrices ll = 2 = 23as shown in Table I.

The running time is seen to rise somewhat slower than a linear
' O function of the sample size. This property is the result of the

procedure which speeds up the algorithm by reducing the num-
_ . . . O.ber of convexity tests, especially in regions of high density of

samples. Moreover, Fig. 3 shows that for a given number of
samples, the running time is nearly a linear function of the
dimensionality.
Note that the sample size required to detect the modes in-

creases with the dimensionality of the data. This is a well-known
practical limitation on the k-nearest neighbor estimation scheme.
Fortunately the convexity testing method does not require a very
accurate estimation of the MPD's, so that the procedure remains

999Oo practicable even for relatively small sample sizes. For the exam-
ples of Fig. 3, the mode detection procedure requires 60 and 90

...¢, samples per class for the 4- and the 5-dimension cases, respec-
.: tively.

*
)

9..I9 99{

-v v*

Ij

0 93

(c)
Fig. 2. Results of experiments 1, 2, and 3 with k0=0.6; 0: samples con-

stituting the data set, 0: samples constituting the nuclei of the detected
modes.

V. CONCLUSION
The mode detection procedure discussed in this correspon-

dence is based on the determination of the local convexity of the
underlying pdf from the samples. Modes are identified as convex
regions of the pdf and can virtually be of any shape and size.
The algorithm, which is noniterative, requires neither a start-

ing classification, nor an a priori number of clusters. Only one
parameter needs to be adjusted.

For each detected mode. the algorithm determines a nucleus
which can be used as a training set for learning the separating
surfaces between the clusters.
The computation time required by the method is linearly

dependent on the number of samples and the dimensionality of
the data. The method therefore remains computationally
efficient for the data of high dimensionality.
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TABLE I

2-DIMENSIONAL DATA SET. 3-DIMENSIONAL DATA SET.

M1= [] M2= 4 M3 21 M 8 M2 [14 M3 4

1=E2=E3= [° °4] | r~~~~~~~40 0

1 2 E 3 0 4 0

[ 0 4

4-DIMENSIONAL DATA SET. 5-DIMENSIONAL DATA SET.

[1411 8 14 141
M[81 ,M 1141 M 141141
1181 2 14 3 141 Ml=8 ,M2= 114 ,M31 = 14

1 2 04~~~~~~~~~~~~~

0 0 L 0 0 0 402~~~~~~~~~~3O 0 4 0
0 4 O 0 4

_00 0 4 00401

VOL (D(P,X,4) )

Fig. 4. A pdf and the associated observation domains for F= 2.
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Satisfactory results have been obtained from computer simula-
tion, showing that the concept of convexity is well-suited to
cluster analysis.

APPENDIX

Proof of the Fundamental Theorem forf(X) Convex (cf. Fig. 4)
A) Consider the variation Sp of the MPD due to an increment

da of the ratio of homothety a:

8p=p{D(P,a + 8a)) -p{D(P,a)}.
Introducing the domain D(P, a, a + 8a) enclosed between D(P,a
+ da) and D(P, a) such that
mass{ D(P, a + da)) = mass{ D(P, a)) + mass{ D(P, a, a + da)},
and
volume{D(P, a + 8a)} = volume {D(P, a))

+volume{D,a,a + da),
one gets

8p = volume {D ((Paa+),a,a + a)
volume({D(P,a+&a)}

-p{D(P,a)}).
(Al)

It is clear that the sign of Sp is equal to the sign of O'p such that

O'p= p{D(P,a,a + da)) -p{D(P,a)).
6'p is the difference between the MPD within the "crust" of the
observation domain and the MPD within the domain itself.

B) Let us now evaluate the sign of O'p. Let A(P, u-) be a
straight line defined by the unit vector ui and by the point P
which is both the center of symmetry and the center of homo-
thety of the family of observations domains D(P,a). This line
crosses the boundary Sr of Dr at two points Pr and P,' and the
boundary S(P, r) of D(P,T) at two points P, and P,' such that

= - P13; = lI }zu

PP, =-PP, = l()U

where the positive scalar l(u-) is defined by the geometrical
properties of Dr.
Two homothetical infinitesimal elements of the surfaces Sr

and S(P,r) respectively centered at P, and PT and denoted dor
and doT verify the following relation:

dOT = T 1. dor

where F is the dimensionality of the feature space.
If now dT denotes the infinitesimal element of volume gener-

ated by an elementary displacement of do, induced by a varia-
tion dT of T such that

dPPT= I(u-)-u dT,
one can write

dWT= I (u*)-(u-xn )-dTr X-lT d

where n- denotes the outward pointing normal to Sr at Pr and
uixni designates the scalar product of u- and n-.
The probability mass within the domain D(P,a) can be writ-

ten as

mass{D(P,a))= { f(PJ I(ui). (uxn)da, ) TF} IdT.

(Alk2)
Since the hypersurface Sr is symmetrical with respect to P,

(A2) can be rewritten as

mass{ D(P, a))

|f { (If(P7) +f(P;))- l(U)- ( U-Xn-).dOr } .dTF". (A3)

In any direction u, the property of symmetry makes possible
to write

P =p'Pa + q-Pa,
P= q-Pa +p-Pa'

where p and q are two positive real numbers such that p + q= 1.
Assuming that the probability density function f(X) is convex

in a domain D which contains D(P,a) one can write [10]

f(PT) =f(p-P + q P.) >p f(Pa) + q f(Pa)
and similarly,

f(Pr ) =f(q P. +P Pa) > q Jf(Pa) +p-f(Pa)

Hence, by summing (A4) and (A5)

f(PT) +f(P) 4f(Pa) +f(Pa).
From (A3)

mass{D(P,a)} (2) f F>l

where

K(a) = { f(P,) +f(P))}* 1(u-) (u-xn-)}dr.

From the properties of homothety we have

volume(D(P, a)) = a Fvolume { Dr}

so that the relation (A6) yields

mass {D(P, a))} K(a)
volume{ D(P, a)) 2F' volume * (Dr)

(A4)

(A5).

(A6)

(A7)

Similarly, for the domain D(P, a,a + Sa), it can be shown that

mass{D(P, a,a + 8a)) < K(a)
volume {D(P, a, a + da)} 2F volume(Dr)

From (Al), (A7), and (A8) one can conclude that Sp < 0.
C) The same procedure holds good for a concave probability

density function. In this case, we obtain Sp > 0.
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