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itself to a fast, highly parallel implementation. Some experiments
have shown that this relaxation method performs well under con-
siderable distortion of the measurements but that its efficacy
depends strongly on the form of the local compatibility function
used. For the type of local compatibility used here it appears that
best results are achieved by the use of maximum and minimum for
fuzzy logical OR and AND respectively.
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Asymmetric Clusters of Internal Migration Regions
of France

JOHN P. BOYD

Abstract-The concept of hierarchical clustering is generalized to
allow asymmetric input and output. The new method is called
"topological clustering" and is computed by the author's program
TOPCLU. The result of ordinary clustering can be thought of as a
chain of reflexive, symmetric, and transitive relations (i.e., equi-
valence relations or partitions) ordered by inclusion. Similarly,
topological clustering results in a chain of reflexive, transitive, but
not necessarily symmetric relations (ie., preorders or topologies),
also ordered by inclusiom. This technique is applied to internal
migration regions of France where it is particularly natural to look
for asymmetric relationships.

I. INTRODUCTION
Many kinds of data are in the form of square, but asymmetric,

matrices. This type of data can be interpreted as the flow of
objects, people, or ideas. In psychology, Rosch [6] has shown that
similarity judgments are asymmetric in an important way. Thus
the usual measures of similarity, such as correlation coefficients,
that force symmetry onto the data may unfortunately obscure this
important aspect of the phenomenon.

Since hierarchical clustering procedures are designed for the
symmetric situation, it is important to find a more general re-
presentation of these square matrices which will accurately
display asymmetric situations. This correspondence presents a
topological clustering approach to this problem. This procedure
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gives a nested sequence of partitions (as do symmetric clustering
routines) but, in addition, gives a partial ordering on the equi-
valence classes (cluster) of these partitions. The result is for each
cutoff level a visual decomposition of the data into its symmetric
and asymmetric parts.

This method is applied to Slater's [7] data on the internal migra-
tion patterns of France. The result is a clear picture of not only the
important clusters but also the pattern of migration between these
clusters.

II. TOPOLOGICAL CLUSTERING
A brief description of the topological clustering method will be

given here. The approach in this correspondence is to generalize
the single-link (or connectedness) method, following Jardine and
Sibson's [4] strategy of modifying the dissimilarity matrix in order
to obtain a new matrix satisfying certain additional axioms. This
allows a nested sequence of discrete structures to be read off from
the new matrix D*.

It is assumed that one is given a square matrix D whose entries
may be interpreted as a set of dissimilarity (or similarity)
coefficients. Since similarity coefficients can be easily transformed
to dissimilarities by a suitable order reversing function, it will be
assumed that D is a dissimilarity matrix of nonnegative real num-
bers satisfying the single axiom

(Definiteness) D[x, y] = D[y, x] = 0, iff x = y

for all x, y. Note that neither symmetry nor the triangle inequality
is assumed to hold on the data matrix D. This matrix D is to be
modified in some minimal way so as to obtain a matrix D* satisfy-
ing the ultrametric inequality described below.
To see how topological clustering generalizes the single-link

method, the latter must be described in a certain format. Namely,
the single-link method results in a function h from the nonnegative
reals into the set of all equivalence relations on the row
(= column) labels for the matrix D. This function is required to be
increasing with respect to set inclusion of the ordered pairs in each
equivalence relation. That is, if c < c' then h(c) c h(c').

Since an equivalence relation is reflexive, symmetric, and transi-
tive, the generalization to another data structure which can repre-
sent asymmetric matrices is both natural and obvious. That is,
simply omit the symmetry axiom! Fortunately, reflexive and tran-
sitive relations are well-known by the name of preorders. Further-
more, just as the set of all equivalence relations on a given set is in
a natural one-to-one correspondence with all partitions on the
same set, so are preorders in a natural one-to-one correspondence
with topologies, at least for finite sets [3]. Therefore this method
will be called topological clustering. The construction of the topo-
logy Tp corresponding to a preorder P on a set X is easily
described: U c X is open in Tp if and only if for all x in X, and u
in U, xPu implies x e U. Conversely, given a topology T on X, the
corresponding preorder PT is defined for all x, y in X by the
condition XPTY if and only if for all open sets U in T, y E U
implies x E U. These two mappings are inverses of each other if X
is finite. Thus preorders and topologies for finite sets are essen-
tially identical. However, since finite preorders are easier to repre-
sent visually than their corresponding topologies, this
correspondence will opt for the preorder form. Nevertheless, the
reader should keep in mind that a preorder is really a topology.
The goal then of topological clustering is to find a function h

from the nonnegative reals into the set of all preorders on the row
labels. This function, as in the case of symmetric clustering, must

0018-9472/80/0200-0101$00.75 (© 1980 IEEE

101



IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS, VOL. SMC-10, NO. 2, FEBRUARY 1980

Fig. 1. Diagram of the preorder given by ordered pairs.

aPa, b, c, d, e, f, and g
bPb, c, and d
cPc
dPb, c, and d
ePe, f, and g
fPe, f; and g
gPe,f and g

Note, for example, that bEpd holds, but that bEpc does not. Also, [a]p <p [c]J
holds, but [a]p -< [c]p does not. The topology Tp consists of the sets, 4, X, {a}, la, b,
d}, {a, b, c, d}, {a, e, f, g}, and {a, b, d, e, fJ g}.

satisfy the condition that. if c < c', then h(c) c h(c'). That is, every-
thing is the same except that the concept "preorder" replaces
"equivalence relation." Of course, this "goal" is not very desirable
unless it can be shown that any finite preorder can be presented in
an attractive and useful format, preferably in such a way as to see
what would have happened if the old assumption of symmetry
were to be imposed. Fortunately, such a format can be found.

First, note that every preorder P can be decomposed into a
symmetric and an antisymmetric part as follows. Define a relation
Ep by the rule

xEpy, iff xPy and yPx.

Obviously Ep is an equivalence relation. Let [x]p denote the
Ep-equivalence class containing x. The relation Ep represents the
summetric part of P. Next, a partial order <.p defined as a
reflexive, antisymmetric, and transitive relation, can be defined on
the equivalence classes of Ep by the rule

[x]p < P [Y]P, iff xPy.

This decomposition of preorders can be used to display them
effectively. Equivalence relations can be represented by the Venn
diagrams of their partitions by drawing circles around the equi-
valence classes. A partial order < is usually shown by first
defining the "covering" relation, denoted by -< by omitting re-
dundant ordered pairs. That is, x -< y, read x is covered by y, if
and only if

1) x<y,
2) x # y, and
3) for no b distinct from both x and y is it true that x < b < y.

The original partial order can be recovered if the underlying set is
finite by taking the transitive closure of the covering relation and
then adjoining the identity relation. The diagram of a partial order
is formed by representing each covering pair x -< y by an arrow
from x to y. Thus x < y if and only if on the diagram there is a
directed path from x to y.
Combining these two notions a preorder P will be pictured as

the diagram of <p drawn on the circles representing Ep. For
example, Fig. 1 presents the diagram of a small hypothetical

preorder on the set X = la, b, c, d, e,J; g}. Note that P consists of
exactly 23 ordered pairs, but the covering relation has only three
ordered pairs on the four equivalence classes. Therefore,
significant conceptual and visual economy is effected by this
representation, indicating that a preorder may be in fact a desir-
able, or at least an understandable, goal.
One way to achieve this goal is to lower some of the numbers in

the dissimilarity matrix D to form a new matrix D* such that for
every cutoff c > 0 the relation Pc, defined by

xP'y, iff D*[x, y] < c

is a preorder. It can be shown that, just as in the symmetric case,
PC is transitive for all c > 0 if and only if D* satisfies the

(ultrametric inequality) D*[x, z] < max{D*[x, y], D*[y. -]'

An efficient procedure for calculating D* is given by the three
loops:

for y 1 step 1 until n do
for x 1 step 1 until n do
for z 1 step 1 until n do
begin

max := (if D[x, y] > D[y, z] then D[x, y], else D[y, j);
if D[x, z] > max then D[x, z] =max

end

Note the funny order of the loops. The fact that the middle ele-
ment y is done first insures that the ultrametric is satisfied after
only one pass. The method gives a "subdominant" solution D* in
the sense of Jardine and Sibson [4]. That is, if D' is any other
matrix satisfying the ultrametric and the requirement that
D'[x, y] < D[x, y] for all x, y, then D'[x, y] < D*[x, y] for all :, v
In other words a subdominant solution D* is the minimal
"contraction" of the data matrix that satisfies the ultrametric.
Note that the map D -+ D* is a continuous function (1R+)f x

(R+)n __, W)n, a virtue shared by the single-link method but mis-
sing from the diameter method [4].
The author's program called TOPCLU which effects this

analysis was written in SIMULA, an ALGOL based simulation
language that is good for handling sets among other things. It has
worked fine for data from a 60 by 60 matrix and can handle in its
present format a 99 by 99 matrix. The program takes as input a
square matrix D of real numbers, converts them to dissimilarities
if necessary, computes the matrix D* satisfying the ultrametric,
and prints out D*. Then it asks the user what cutoffs ( are desired
and prints out P, as described above.

It is interesting to compare TOPCLU with a program,
DECOMP, written by Brams [1]. DECOMP takes as input a

binary matrix and forms the transitive closure, printing out the
resulting preorder, plus some row and column statistics. Except
for these statistics, the author's program would do the very same
thing on a matrix of zeros and ones if the cutoffs were between
zero and one. Therefore, the author's program generalizes Bram's
procedure, which only takes 0-1 data, to a procedure accepting
any matrix of nonnegative real numbers.
TOPCLU itself does not normalize matrices. The author re-

commends that only normalized matrices be used as input, unless
there are other grounds for believing that the asymmetries are not

merely caused by a row and column size bias.

I1I. FRENCH MIGRATION

Slater [7] presented data on the internal migration patterns
among 21 regions of France (see Fig. 2). He normalized the matrix

so that each row and each column added to 1000, using an itera-
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TABLE I
ADJUSTED 1962-1968 FRENCH INTERREGIONAL MIGRATION

Destination

Origin 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

1 0 49 86 76 66 78 40 44 23 16 23 56 81 46 54 47 53 29 29 42 61
2 42 0 132 23 31 23 114 55 179 46 101 25 28 29 26 21 17 29 15 26 38
3 60 178 0 125 31 36 22 302 29 17 14 16 18 16 19 23 16 22 19 16 22
4 58 17 158 0 60 235 14 61 21 17 18 49 77 32 23 16 41 22 21 24 37
5 72 25 33 65 0 63 77 37 26 25 22 100 51 115 41 35 78 22 67 17 28
6 82 16 37 212 65 0 20 25 20 26 10 117 182 33 19 14 47 17 21 21 18
7 51 91 32 31 60 16 0 28 35 31 211 19 23 23 25 19 16 131 87 34 38
8 51 85 231 80 33 41 36 0 49 34 34 29 24 27 40 36 24 39 31 36 43
9 25 153 28 25 23 13 44 64 0 221 136 15 25 22 28 28 14 33 21 30 54
10 27 60 17 26 38 16 39 59 235 0 144 19 39 22 34 35 6 39 25 57 64
11 27 91 10 24 17 20 214 22 114 189 0 9 20 24 23 18 7 90 14 19 50
12 53 22 18 41 96 154 16 20 19 16 14 0 206 163 25 25 39 17 16 19 20
13 90 28 32 94 58 139 15 38 33 18 19 238 0 39 37 14 11 22 15 18 40
14 49 14 23 32 117 19 15 27 30 44 22 129 45 0 145 36 149 20 31 22 30
15 48 18 23 28 40 27 15 30 30 26 22 37 27 145 0 190 126 29 38 57 44
16 47 19 29 21 31 18 25 26 25 71 13 22 18 33 188 0 89 37 47 185 56
17 55 24 21 16 81 20 15 27 13 8 16 27 18 144 126 69 0 24 234 40 21
18 31 28 22 17 28 24 129 28 31 56 86 19 13 11 24 47 34 0 151 96 125
19 41 20 23 16 69 27 92 23 22 26 25 30 15 22 35 70 198 144 0 53 49
20 44 25 25 19 27 8 27 42 32 50 32 18 23 20 46 202 15 110 74 0 162
21 47 36 20 29 29 23 31 43 34 65 38 25 67 33 43 57 20 126 45 190 0

Region Parisienne
2 Champagne
3 Picardie
4 Ilaute-llormandie
5 Centre
6 Basse-[lormandie
7 Bourgogne
0 Nord
9 Lorraine

10 Alsace
11 Franche-Comte

12 Pays de La Loire
13 Bretagne
14 Poitou-Charentes
15 Aquitaine
16 Midi-Pyrenees
17 Limousin
13 Rh6ne-Alpes
19 Auvergne
20 Languedoc
21 Provence-Cote d'Azur-Corse

Fig. 2. Twenty-one French regions.

tive procedure recommended by Romney [5] and others [2] (see
Table I). The advantage of normalization for asymmetric cluster-
ing is that it removes the size of the row or column total as a false
asymmetric bias. That is, making the rows, but not the columns,
add up to 1000 does not remove the column bias that one would
expect from the "null hypothesis" that the entries within each
column be identical. Thus the conditional probability of migra-
tion is not a good way to detect an asymmetric bias.' For exam-

ple, the fact that a higher percentage of people in Champagne

' Similar remarks, of course, could be made for other kinds of data. For example,
word associations tend to go to the most common words. Normalization would
remove this bias.

move to Paris than vice versa does not necessarily indicate a
greater inclination on the part of the average resident of Cham-
pagne to move to Paris. It may only indicate that Paris is more
populous than Champagne. Therefore, to remove the size bias,
one forces the columns as well as the rows to add up to 1000,
resulting in a doubly stochastic matrix (if you divide by 1000).
This is done by alternately normalizing the rows and then the
columns until the matrix converges to a doubly stochastic matrix
D. This process can be shown to converge if there are no zero rows
or columns. Furthermore, the cross-product ratio is preserved:

Dij Di j - Dij Dij, = Mj iiMj-Mij Mji
for all i, i',j,j'. Returning to the Champagne-Paris example, one can
see, in fact, from Table I that after the size bias is removed by the
normalization, there is a slight tendency for people to be more
inclined to move from Paris to Champagne (49 versus 42 per 1000
emigrants). These numbers were transformed to dissimilarities D
by subtracting them from 302, the maximal entry. Slater did a
symmetric hierarchical clustering of these regions and then dis-
cussed separately some of the asymmetric linkages. Topological
clustering enables one to do both simultaneously. Table II gives
the program's output matrix D*, satisfying the ultrametric inequa-
lity. The preorders for three cutoffs are shown in Fig. 3. Note that
the Venn diagrams for the equivalence classes are not really
circles, but outlines of the geographical regions. The arrows of the
covering relation are oriented to correspond to the direction of
net migration.
A word of warning should be inserted here. Since this method is

a generalization of the single-link method, it shares its most con-
troversial property, "chaining." That is, if there is a chain x, y, z,
where x is close to y and where y is close to z, then it will put x
close to z, even though they may be quite distant in fact.
Sometimes long chains are formed as cluster when the ends are
similar. These clusters may fail to be compact. Although it can be
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TABLE II
ULTRAMETRIC FOR DATA OF TABLE I AFTER THEY HAVE BEEN TRANSFORMED 1) INTO DISSIMILARITY BY d = 302 -S AND THEN

2) BY THE ULTRAMETRIC ALGORITHM

THE ULTRAMETRIC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

216
170

0

144
187
144
170
71

170
170
170
148
148
173
173
173
173
173
173
173
173

216
173
173

0

187
90

173
173
173
173
173
148
148
173
173
173
173
173
173
173
173

216
185
185
185

0

185
185
185
185
185
185
185
185
185
185
185
185
185
185
185
185

216 216
173 158
173 158
67 158

187 187
0 158

173 0

173 158
173 158
173 158
173 88

148 158
148 158
173 173
173 173
173 173
173 173
173 173
173 173
173 173
173 173

216
170

0

144
187
144

170
0

170
170
170
148
148
173
173
173
173
173
173
173
173

Region Parisienne
Champagne
Picardie
Haute-Normandi e
Centre
Bas se-iHormandi e
Bourgogne
Nord
Lorraine
Al sace
Franche- Conite
Pays de la Loire
B retagne
Poi tou-Charentes
Aquitaine
Mi di -Pyre'nees
Limousin
Rhone-Al pes
Auvergne
Languedoc
Provence-Cote dI'zur-Corse

(b)

c = 120

Fig. 3. Preorders on 21 French regions for three cutoff values.

1

2
3
4

5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21

0

212
212
212
212
212
212
212
212
212
212
212
212
212
212
212
212
212
212
212
212

216
0

124
144
187
144
149
124
149
149
149
148
148
173
173
173
173
173
173
173
173

216
123
124
144
187
144
113
124

0

67
113
148
148
173
173
173
173
173
173
173
173

216
123
124
144
187
144

113
124
81
0

113
148
148
173
173
173
173
173
173
173
173

216
158
158
158
187
158
91

158
158
158

0

158
158
173
173
173
173
173
173
173
173

216
173
173
120
187
120
173
173
173
173
173

0

64

173
173
173
173
173
173

173
173

216
173
173
120
187
120
173
173
173
173
173

96
0

173
173
173
173
173
173

173
173

216
171
171
139
187
139
171
171
171
171
171

139
139

0

157
157
158
158
158
157
157

216
171
171
157
187
157
171
171
171
171
171
157
157
157

0

114
158
158
158
114
114

216
171
171
157
187

157
171
171
171

171
171

157
157
157
112

0

158
158
158
100
112

216
171
171
153
187
153
171
171
171

171
171

153
153
153
157
157

0

151
104
157
157

216

171
171
158
187
158
171
171

171
171
171

158
158
158
158
158

158
0

158
158
158

216
171
171
153
187
153
171
171
171
171
171
153
153
153
157

157
68

151
0

157
157

216
171
171

157
187
157
171
171
171
171
171

157
157
157
117
117

158
158
158

0

112

216
171
171
157
187
157
171

171
171
171
171
157
157
157
140
140
158
158
158
140

0

(a)

c = cutoff

c = 160

c = 140

2
3
4
5
6
7
H
9
10
11
1

-

13
14
15
16
17
18
19
20
21
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argued, especially in biology [4], that chaining is desirable, it is
regarded as a weakness in most social science circles. In this data,
however, chaining does not occur to any noticeable degree.
Furthermore, one can easily conceive of a diameter method ver-
sion of topological clustering so as to avoid this problem.2

Nevertheless, the reader should be aware of the chaining
property in order to properly interpret the diagrams. For exam-
ple, in Fig. 3(a). the flow from the cluster containing Haute-
Normandie (4) to the cluster containing Picardie (3), together
with the migration from Picardie (3) to the Champagne cluster
(2), does not imply a direct flow from Haute-Normandie (4) to
Champagne (2), even though the transitive closure would produce
such an arrow. In this sense the "cover" relation is closer to the
data than is the partial order used to define it. To be precise, for a
given cutoff c 2 0, [x]c -< [y]c if and only if there is an ordered pair
(x', y') equivalent to x and y, respectively, such that D[x', y'] < c.
Another property of the single-link method is that, for the high

cutoff values when there are just two clusters remaining, these two
clusters are often very different in size. Such is the case here, where
with a cutoff of 200 the Region Parisienne is alone in one cluster
and the rest of France is in another. The diameter method would
have given two clusters of about equal size. It seems, however, that
the cultural and political realities in France are well represented
by putting Paris in a class by itself.

Another cautionary note peculiar to the asymmetric aspects of
this method is that it is possible to pick a cutoff c such that for
some x, y

D*[x, y] < c < D*[y, x]

and where [x]c * [y]c, and yet the difference D*[x, y] - D*[y, x] is
really so small as to be insignificant. In the absence of a statistical
theory oferror, one has to guess whether these differences are large
enough to seem interesting.

Having made these caveats, however, the picture presented in
Fig. 3 is reasonable. The clusters themselves agree almost perfectly
with Slater's results. The arrows to the Alsace and Lorraine re-
gions reflect the heavy industrial growth in those areas. Con-
versely, the movement out of the northwest is consistent with the
relative economic backwardness of those regions. Finally, the lack
of any net movement in or out of the Region Parisienne indicates
that this area may have reached a steady state. This result is
somewhat surprising to those familiar with the rapid influx into
the capital cities of developing countries such as Mexico or even
Russia. Moreover, even in the steady state the great cities of anti-
quity could not maintain their own populations without a steady
flow of people from the rural areas with their higher birthrate. In
France, however, these factors are negated by the low birthrate in
the rural areas, good health facilities in the cities, as well as indus-
trialization outside of the Region Parisienne.

IV. CONCLUSION
Topological clusters can be of use to researchers or planners

studying the interrelationships among a set of regions or nodes. It

2 Here is the diameter method. Assume the same program as above except for
replacing the last "if' statement with the following:

if D[x, z] > max then
begin if D[x, y] > D[y, z],

then D[x, y] = D[x, z],
else D[y, z] - D[x, z],

end.

That is, instead of contracting the D[x, z] as in the single-link method, one stretches
the longest leg until it matches D[x, z]. Note that this method involves breaking ties
arbitrarily and then treating the two legs differently. This is what causes the discon-
tinuities in the diameter method here and in the symmetric case.

is recommended that asymmetric data be normalized so as to
remove asymmetries due purely to row and column effects. It is
believed that the combination of these two techniques can lead to
interesting results that can be easily displayed.
Other topological clustering methods can be constructed that

generalize at least some of the extant symmetric methods in addi-
tion to the single-link version used in this paper. Thus many of the
controversies among the various methods will also be transported
into the asymmetric domain of topological clustering. On the
other hand, if the idea of topological clustering becomes widely
accepted, then clustering methods which do not generalize to it
may fall into disfavor even in the symmetric case.
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Some Experiments in Point Pattern Matching

DARYL J. KAHL, AZRIEL ROSENFELD, FELLOW, IEEE, AND
ALAN DANKER

Abstract-Given two pictures of a scene taken by different sensors
or at different times, one way of matching the two pictures is to
extract a set of distinctive local features from each, and then match
the resulting point patterns. The sensitivity of point pattern
matching to various types ofnoise and distortion, including omissions
and additions, random walks, rotation and rescaling, as well as the
use of different feature detection operators to extract the points
is investigated. The effects of additional information (e.g., feature
types) in overcoming the effects of noise is also studied.

I. INTRODUCTION

Matching two pictures of the same scene is a common problem
in computer vision and image processing. This problem arises in
connection with registering pictures obtained by different sensors,
or by the same sensor at different times. In such situations the
occurrence of systematic gray level differences between the
pictures, as well as geometrical distortions, often makes it
impractical to use conventional correlation techniques for
matching. A possible alternative is to segment the two pictures
into regions and attempt to pair off the corresponding regions
based on their properties (color, size, shape, etc.) [1]; but this
approach depends on the reliability of the segmentation process.
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