As in the case of magnetics with "easy axis," we construct the Lagrangian of the magnetoelastic system and write the law of energy conservation, which is used to obtain the solution of the Landau-Lifshitz equation. For FEP:

$$\begin{split} \xi &= \int d\eta (1-\eta)^{-1} \left\{ (1+\eta)^2 u_3^2 - h_s \kappa_2 \\ &+ h_s (\kappa_2 - \kappa_1) \eta^2 \right\} + \sigma (1-\eta^2) \right\}^{-1/2}, \\ \eta &= \cos \varphi(\xi), \quad \xi = (x-vt)/\Delta, \quad u_3^2 = h_s. \end{split}$$
(10)

For AFEP:

$$\xi = \int d\eta \left(1 - \frac{2\alpha'}{\alpha + \alpha'} \eta^2 \right)^{1/2} (1 - \eta^2)^{-1} \\ \cdot \left[u_4^2 - 2\tilde{h}_s \kappa_2 + 2\tilde{h}_s (\kappa_2 - \kappa_1) \eta^2 \right]^{-1/2}, \\ u_4^2 = 2 (\tilde{\delta} + \tilde{h}_s).$$
(11)

DISCUSSION OF THE RESULTS

The following oscillation types in magnetics take place depending on the value of propagation velocity u of a magnetoelastic wave.

If in FEA the maximum stationary propagation velocity of a magnetic soliton $2u_1$ is greater than the transverse sound velocity u_t , then in the following velocity intervals $0 < u < u'_t = u_t(1 - h_s/u_1^2)^{1/2}$ and $u_t < u < 2u'_1 = 2u_1(1 + h_su_t^2/4u_1^4)^{1/2}$, a magnetoelastic soliton exists, and if u satisfies the conditions $u'_t < u < u_t$ and $u > 2u'_1$, then we get coupled magnetoelastic waves, undamped at the infinity (spin waves). If, on the contrary, $2u_1 < u_t$, then for u, lying in the intervals $0 < u < 2u''_1 = 2u_1(1 - h_s/u_1^2)^{1/2}$ and $u_t < u < u''_t = u_t(1 + 4h_s/u_t^2)^{1/2}$, one obtains moving soliton, and under assumptions $2u''_1 < u < u_t$ and $u > u''_t$, spin waves.

For any relative values of $2u_2$ and u_t in AFEA if u satisfies $0 < u < 2u_2$, we get a moving soliton, and for $u > 2u_2$, spin waves.

With arbitrary relative values of $2u_3$ (for FEP) or u_4 (for AFEP) and the velocity u_t , we get a moving soliton if $0 < u < u_t''$ and $u > u_t$, and we have spin waves if $u_t'' < u < u_t$. When FEP is in basic plane, there is no anisotropy and magnetic field $u_t'' = u_t(1 - h_s/u_3^2)^{1/2} = 0$. For AFEP, $u_t'' = u_t$. $(1 - 2\tilde{h}_s/u_4^2)^{1/2}$. Note that from our results we cannot obtain the limitation of the propagation velocity value of a stationary moving magnetoelastic soliton, due to the assumption that in the cases considered, M and L lie in the "easy plane."

Thus, in the velocity spectrum of magnetoelastic oscillations near the value of transverse sound velocity, an oscillation-type gap exists, changing on its boundaries. The width of the gap is determined by the magnetoelastic interaction parameter. Oscillation character is also changed when u approaches the maximum velocity value of a stationary moving magnetoelastic soliton, but is unchanged in the vicinity of longitudinal sound velocity value.

When the sublattices' magnetic momenta in antiferromagnets remain antiparallel while deviating from the equilibrium directions, the results are analogous to those for ferromagnets.

REFERENCES

- J. F. Dillon, "Domains and domain walls," in *Magnetism*, Vol. 3, G. T. Rado and H. Shul, Eds. New York: Academic, 1963, pp. 415-461.
- [2] I. A. Akhiezer and A. E. Borovik, "On nonlinear spin waves in ferromagnetic and antiferromagnetic substances," Sov. Phys. JETP, vol. 52, pp. 1332-1344, May 1965.
- [3] V. M. Yeleonsky, N. N. Kirova, and N. E. Kulagin, "On magnetic solitons propagating along axis of anisotropy," Sov. Phys. Pisma v

JETP, vol. 29, pp. 601-605, May 1979.

- [4] A. K. Zvezdin and A. F. Popkov, "Domain boundary motion with velocity close to the sound velocity," Sov. Phys. PTT, vol. 21, pp. 1334-1343, May 1979.
- [5] T. Fujii, S. Shiomi, T. Shinoda, and S. Uchiyma, "Analysis of domain wall motion under influence of magnetoelastic coupling in orthoferrite," *Japan. J. Appl. Phys.*, vol. 18, pp. 1061-1069, June 1979.
- [6] V. L. Preobrazhensky and M. A. Savchenko, "Magnetoacoustic solitons in easy plane type antiferromagnets," *Digests of 20th Ampere Congr.* Tallin, Sept. 1979, p. C1307.
- [7] V. I. Ozhogin and A. Yu. Lebedev, "On magnetoelastic soliton in antiferromagnet," J. Magn. Magn. Mat., vol. 15, pp. 617-618, Mar. 1980.
- [8] V. D. Buchelnikov, V. A. Gurevich, and V. G. Shavrov, "Solitary magnetoelastic waves in magnetics," *Digests of Sov. Union Magn. Conf.*, Charkov, U.S.S.R., Sept. 1979, pp. 313-314.

Correction to "Effects of the Leakage Flux in the Inhomogeneities of Magnetic Fields in a Sectorial Electromagnet"

YASUHIKO OKUMA

In the above paper¹, the number on the fifth line of the abstract should have been 10^{-4} .

Manuscript received December 30, 1981.

The author is with the Research Center for Nuclear Physics, Osaka University, Suita, Osaka 565, Japan.

¹Y. Okuma, *IEEE Trans. Magn.*, vol. MAG-17, no. 5, pp. 1907-1910, Sept. 1981.

Correction to "Magnetostatic Forward Volume Wave Reflective Dot Arrays"

G. VOLLUET

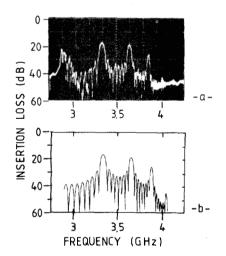


Fig. 2. Comparison of experimental (-a-) and computed (-b-) insertion loss versus frequency of a periodic 8 rows reflective dot array.

The author is with THOMSON-CSF, Research Center, Domaine de Corbeville, BP 10, 91401 Orsay, France.