
COMPUTER 98

EDUCATION

Published by the IEEE Computer Society 0018-9162/10/$26.00 © 2010 IEEE 

Computer Science:  
Is It Really the Scientific 
Foundation for Software  
Engineering?

S oftware engineering is 
often referred to as an 
“emerging” discipline—
something that’s relatively 

new and for which educational stan-
dards and definitions are needed. 
Fortunately, volunteers from the IEEE 
Computer Society and the ACM took 
on this task, with the result being 
the Software Engineering 2004 Cur-
riculum Guidelines for Undergraduate 
Degree Programs in Software Engi-
neering (http://sites.computer.org/
ccse/SE2004Volume.pdf). According 
to SE04:

“Software engineering is that form of 

engineering that applies the principles 

of computer science and mathematics 

to achieving cost-effective solutions to 

software problems. . . . One particularly 

important aspect is that software engi-

neering builds on computer science and 

mathematics. But, in the engineering 

tradition, it goes beyond this technical 

basis to draw upon a broader range 

of disciplines. . . . Software engineer-

ing . . . is different in character from 

other engineering disciplines, due to 

both the intangible nature of software 

and to the discrete nature of software 

operation. It seeks to integrate the prin-

ciples of mathematics and computer 

science with the engineering practices 

developed to produce tangible, physical 

artifacts.”

This definition, designed to 
support the development of under-
graduate programs, emphasizes 
the importance of the relationship 
between software engineering and 
computer science. The “important 
aspect,” that software engineer-
ing builds on computer science and 
mathematics, stands out as central to 
the definition of the discipline.

BASIC SCIENCE VS. 
ENGINEERING SCIENCE

From my own experience, I would 
say that software engineering builds 
on computer science and mathemat-
ics in the same way that my own 
degrees in electrical engineering 
build on physics and mathemat-
ics. Clearly, the professionals at the 
IEEE CS and ACM who drafted this 

language, reviewed it, and use it to 
develop undergraduate software 
engineering programs around the 
world have found this relationship 
useful. One particular point of util-
ity was in helping fellow computing 
faculty understand the similarities 
and differences between computer 
science and software engineering. 
That is, until the practical question 
of engineering accreditation became 
a reality.

For all undergraduate engineering 
programs in the US, the organization 
responsible for an undergraduate 
engineering program’s accreditation 
is ABET’s Engineering Accreditation 
Commission. The EAC defines nine 
general criteria that must be met for 
the program to include the title “engi-
neering” (www.abet.org/Linked%20
Documents-UPDATE/Criteria%20
a nd%20PP/E001%2009-10%20
EAC%20Criteria%2012-01-08.pdf). 

EAC Criterion 5 specifies the 
minimum expectations for an engi-
neering program’s required courses: 
“one year of a combination of college 
level mathematics and basic sciences 

 Stephen T. Frezza, Gannon University

There are significant differences between an engineering 
discipline founded on a natural science and one founded on a 
formal science.



99AUGUST 2010

build its science and mathematics 
coursework solidly around computer 
science courses, particularly founda-
tional ones.

Conversely, one could easily read 
the EAC criterion to view all computer 
science coursework as engineering 
science—after all, programming 
is a form of engineering, a creative 
endeavor that produces a real prod-
uct. Computer science appears 
significantly disconnected from the 
scientific method that underpins the 
study of natural science. From this 
perspective, all computer science 
courses, even foundational ones, 
should be classified as “engineering 
science,” not “mathematics and basic 
science.” 

One would like to think that this 
discrepancy is just an exercise in 
pointless academic epistemology. 
Unfortunately, it has significant rami-
fications for engineering education, 
particularly computing education. 
How computer science coursework 
is viewed by engineers and accredit-
ing bodies fundamentally skews how 
undergraduate software engineering 
and other computing programs are 
built. 

The reality is that all undergradu-
ate engineering programs are under 
significant pressure to maximize 
the material and learning within 

the limited credit hours available 
in the program. Consequently, any 
undergraduate software engineering 
program built with computer science 
as its foundation instead of natural 
science and traditional mathematics 
would at best receive a “deficient” 
rating for EAC Criterion 5. Depend-
ing on your view of engineering as a 
discipline, this may or may not be a 
good thing. 

If computer science is an engi-
neering science that “bridges science 
and mathematics to engineering 
design,” then it hardly qualifies as 
the scientific foundation for soft-
ware engineering or any other form 
of engineering, at least from the 
ABET and similar perspectives. On 
the other hand, if it isn’t just an engi-
neering science, then its scientific 
content and methodology would need 
to be understood for well-formulated 
software engineering programs. 
Distinguishing computer science as 
basic science, engineering science, 
or some blend is critical for software 
engineering as both a discipline and 
an educational program. 

COMPUTER SCIENCE IN 
ENGINEERING PROGRAMS

In the UK education system, engi-
neering science has a more formal 
meaning and focuses on experi-

(some with experimental experience) 
appropriate to the discipline.” This is 
regularly interpreted to mean that 25 
percent of the credits required of the 
program consist of mathematics and 
basic science courses. Historically, 
this has been interpreted as “natural 
science” and “mathematics” or other 
course offerings from traditional sci-
ence and mathematics departments. 

ABET clarifies this further: “The 
engineering sciences have their roots 
in mathematics and basic sciences 
but carry knowledge further toward 
creative application. These studies 
provide a bridge between mathemat-
ics and basic sciences on the one 
hand and engineering practice on 
the other.” 

While no official interpretation 
for a basic science is provided, the 
terminology is meant to distinguish 
a physics or geology course from 
engineering science courses such as 
thermodynamics or materials sci-
ence. The rationale is probably to 
prevent undergraduate engineering 
programs from artificially declaring 
engineering courses as basic science 
and unbalancing the program with 
something less rigorous than is oth-
erwise warranted. 

The open question is where com-
puter science fits in. Is it mathematics, 
a basic science, or an engineering sci-
ence? Is it some mix of two or even 
all three? Here the more established 
engineering definitions, as evidenced 
by the EAC criterion, differ signifi-
cantly from the software engineering 
definitions, as presented in SE04.

Reading the EAC criterion, the 
expectation might be that some, 
perhaps a significant, amount of com-
puter science coursework would be 
considered as basic sciences appro-
priate to the discipline of software 
engineering—in particular, those 
computer science courses signifi-
cantly grounded in mathematics, 
such as data structures, algorithms, 
computability, and formal methods. 
From this perspective, an undergrad-
uate program would be expected to 

 Table 1. Some differences between science and engineering in the UK.

Science Engineering

Goal: pursuit of knowledge and understand-
ing for its own sake

Goal: creation of successful artifacts and sys-
tems to meet people’s wants and needs

Key scientific process: discovery (mainly by 
controlled experimentation)

Corresponding engineering process: inven-
tion, design, production

Analysis, generalization, and synthesis of 
hypotheses

Analysis and synthesis of design

Reductionism, involving the isolation and 
definition of distinct concepts

Holism, involving the integration of many 
competing demands, theories, and ideas

Making more or less value-free statements Activities always value-laden

The search for and theorizing about causes, 
such as gravity, electromagnetism

The search for and theorizing about processes, 
such as control, information, networking

Pursuit of accuracy in modeling Pursuit of sufficient accuracy in modeling to 
achieve success

Experimental and logical skills Design, construction, test, planning quality 
assurance, problem solving, interpersonal 
communication skills



COMPUTER 100

EDUCATION

ence textbook may help.
Table 2 shows a side-by-side com-

parison of the table of contents of 
Essential Cell Biology (B. Alberts et al., 
3rd ed., Garland Science, 2009) with 
that of Data Structures Using C++ 
(D.S. Malik, 2nd ed., Course Technol-
ogy, 2009). I chose these based on 
their topics and their popularity on 
Amazon.com. 

In looking at the 20 chapters of the 
biology text, most of these topics—at 
least the first 18—put a pedagogical 
focus on the transfer of knowledge 
of cell biology as it’s currently under-
stood, including the recognition of 
the structures involved and how 
these structures interact to form cell 
behavior. Most of the text focuses 
on terminology, definitions, and the 
many important processes and rela-
tionships that make up cell biology. 
Only in the last two chapters do the 

authors begin to shift the focus to the 
application of this general knowledge 
to practical issues, such as “Tissues 
and Cancer.”

The table of contents for the data 
structures text is for a course that fol-
lows most introductory programming 
courses. It’s what SE04 designates as 
part of computer fundamentals and 
is required of accredited computer 
science programs. In this text, an 
exactly opposite view is presented: 
the first two chapters focus on relat-
ing the material to engineering and 
design, and the following 11 chapters, 
as well as most of the appendices, 
focus on the transfer of knowledge 
of computing data structures and 
how these structures operate both 
mathematically as well as in a formal 
description language. Most of the text 
appears to focus on terminology, 
definitions, and the many impor-

mental design and analysis. Table 1 
highlights the differences. 

Taking some clues from the UK 
perspective, a working definition 
for engineering science realizable in 
the classroom would be a bridging 
or blend of science and engineering 
perspectives: 

•	 discovery that leads to invention;
•	 hypotheses that support design;
•	 isolation of specific concepts to 

support the integration of mul-
tiple ones; and

•	 understanding sufficiency in 
model accuracy.

The practical question to answer 
would be where most computer 
science courses fall a long this 
scale—science, engineering science, 
engineering. A cursory comparison 
of a natural science to a computer sci-

Table 2. Comparison of Essential Cell Biology’s table of contents with that of Data Structures Using C++.

Biology text Engineering text

1. Introduction to Cells 1. Software Engineering Principles and C++ Classes

2. Chemical Components of Cells 2. Object-Oriented Design (OOD) and C++

3. Energy, Catalysis, and Biosynthesis 3. Pointers and Array-Based Lists

4. Protein Structure and Function 4. Standard Template Library (STL) I

5. DNA and Chromosomes 5. Linked Lists

6. DNA Replication, Repair, and Recombination 6. Recursion

7. From DNA to Protein: How Cells Read the Genome 7. Stacks

8. Control of Gene Expression 8. Queues

9. How Genes and Genomes Evolve 9. Search Algorithms

10. Manipulating Genes and Cells 10. Sorting Algorithms

11. Membrane Structure 11. Binary Trees

12. Membrane Transport 12. Graph Algorithms

13. How Cells Obtain Energy from Food 13. Standard Template Library (STL) II

14. Energy Generation in Mitochondria and Chloroplasts A. Reserved Words

15. Intracellular Compartments and Transport B. Operator Precedence

16. Cell Communication C. Character Sets

17. Cytoskeleton D. Operator Overloading

18. The Cell Division Cycle E. Header Files

19. Genetics, Meiosis, and the Molecular Basis of Heredity F. Additional C++ Topics (Inheritance, Pointers, and Virtual Functions)

20. Tissues and Cancer G. Problem Solving Using Object Oriented Methodology

— H. C++ for Java Programmers

— I. References for Further Study

— J. Answers to Odd-Numbered Exercises



101AUGUST 2010

science. This certainly isn’t surpris-
ing to most software engineers. 

Stephen T. Frezza is an associate pro-
fessor of software engineering in the 
Computer and Information Science 
Department at Gannon University. 
Contact him at frezza001@gannon.
edu.

are data structures? How are they 
expressed? Which are more efficient 
than others in different situations? 
The application or bridging to engi-
neering is a secondary, not a primary, 
focus of most coursework. From the 
student learning perspective, data 
structures aren’t significantly differ-
ent from biology—it’s really the study 
of a formal science, not a predomi-
nantly engineering science. 

Whether you agree with 
this or not, expect there 
to be significant dif-

ferences between an engineering 
discipline founded on a natural sci-
ence and one founded on a formal 

tant processes and relationships that 
make up computing data structures. 

Again, you could argue that 
what students do for homework in 
the data structures course is sig-
nificantly different from that in cell 
biology. The questions and exercises 
in a computer science course invari-
ably include the creation of artifacts, 
whereas the biology course does not. 
The goal is to teach students how to 
use data structures to build useful 
code; the artifacts bridge mathemat-
ics and science, so this coursework 
should be classified as engineering or, 
at the very least, engineering science. 

This interpretation, unfortu-
nately, stands at odds with the IEEE 
CS and ACM assertions in SE04’s 
Guiding Principle 2 on computer sci-
ence and its relationship to software 
engineering: 

“Software Engineering draws its 

foundations from a wide variety of 

disciplines. Undergraduate study of 

software engineering relies on many 

areas in computer science for its theo-

retical and conceptual foundations, 

but it also requires students to utilize 

concepts from a variety of other fields, 

such as mathematics, engineering, 

and project management, and one or 

more application domains. All soft-

ware engineering students must learn 

to integrate theory and practice, to 

recognize the importance of abstrac-

tion and modeling, to be able to acquire 

special domain knowledge beyond the 

computing discipline for the purposes 

of supporting software development in 

specific domains of application, and to 

appreciate the value of good design.”

From my own perspective as a 
software engineering educator, I sus-
pect that the IEEE CS and ACM have a 
point. From the students’ perspective, 
the data structures course is substan-
tively much more like math or biology 
than engineering. The artifacts gener-
ated aren’t about invention, design, or 
discovery, rather the work is primar-
ily focused on understanding: What 

Editor: Ann E.K. Sobel, Department of 
Computer Science and Software Engineering, 
Miami University; sobelae@muohio.edu

 Selected CS articles and columns  
 are available for free at http://  
ComputingNow.computer.org.

LISTEN TO GRADY BOOCH
“On Architecture”

podcast available at      http://computingnow.computer.org


