
I a a I.

I I I a I I I I I I I I

IloliH Aria1;0 I7 I

-r FromlSonc¢pl 1t~~~~~1FI

Jose A.B. Fortes

Purdue University

Benjamin W. Wah
University of Illinois at Urbana-Champaign

Systolic arrays have
regular and modular
structures that match
the computational
requirements of many
algorithms. Their
implementation
requires that a wealth
of subsumed concepts
and engineering
solutions be mastered
and understood.

S ystolic arrays are the result of
advances in semiconductor tech-

S nology and of applications that
require extensive throughput. Their reali-
zation requires human ingenuity combined
with techniques and tools for algorithm
development, architecture design, and
hardware implementation.

Invariably, the first reaction of people
who are exposed to the systolic-array con-
cept is one of admiration for the concept's
elegance and for its potential for high per-
formance. However, those who next
attempt to implement a systolic array for
a specific application soon realize that a
wealth of subsumed concepts and engi-
neering solutions must be mastered and
understood. This special issue attempts to
provide insights into the implementation
process and to illustrate the different tech-
niques and theories that contribute to the
design of systolic arrays.

Characteristics of
systolic arrays

Since 1978, when H.T. Kung and C.E.
Leiserson1 introduced the term "systolic

array" and the concept behind the term,
much research has been done and much
has been written about the design of
algorithms and architectures suitable for
such structures. Today, the idea of a sys-
tolic array is as familiar to many computer
scientists and engineers as that of a com-
piler or a microprocessor.
The term "array" originates in the sys-

tolic array's resemblance to a grid in which
each point corresponds to a processor and
a line corresponds to a link between
processors. As regards this structure, sys-
tolic arrays are descendants of array-like
architectures such as iterative arrays,2 cel-
lular automata,3 and processor arrays.4
These architectures capitalize on regular
and modular structures that match the
computational requirements of many
algorithms. Table 1 is a list of applications
for which systolic designs are available.
Systolic arrays belong to the generation of
VLSI/WSI (Very Large Scale Integra-
tion/Wafer Scale Integration) architec-
tures for which regularity and modularity
are important to area-efficient layouts.
Although the array structure character-

izes the interconnections in systolic arrays,
it is the term "systolic" that captures the
innovative and distinctive behavior of

001 8-9162/87/0700-00125091.00 2 19871EEE

b I I

12 COMPUTER

these systems. "Systolic" in this context
means that pipelined computations take
place along all dimensions of the array and
result in very high computational through-
put. In other words, systolic algorithms
schedule computations in such a way that
a data item is not only used when it is input
but also is reused as it moves through the
pipelines in the array. This results in
balancing the processing and input/output
bandwidths, especially in compute-bound
problems that have more computations to
be performed than they have inputs and
outputs. Conventional processor designs
are often limited by the mismatch of input
bandwidth and output bandwidth, which
occurs because data items are read/writ-
ten every time they are referenced.
One reason for choosing "systolic" as

part of the term "systolic array" was to
draw an analogy with the human circula-
tory system, in which the heart sends and
receives a large amount of blood as a result
of the frequent and rhythmic pumping of
small amounts of that fluid through the
arteries and veins. In this analogy, the
heart corresponds to a source and destina-
tion of data, such as a global memory, and
the network of veins is equivalent to the
array of processors and links. Another
explanation of the term is that in many of
the first proposed systolic architectures,
processing elements alternated between
cycles of "admission" and "expulsion" of
data-much in the same way that the heart
behaves with respect to the pumping of
blood.

In the article "Why Systolic Architec-
tures?"5 H.T. Kung presents an excellent
introduction to the basic ideas, the advan-
tages, and the open problems of systolic
arrays. Today, this article is still essential
reading for those interested in learning the
fundamentals of systolic arrays. Our intro-
duction endeavors neither to replace nor
to repeat the contents of that pioneering
article. However, it is appropriate to
elaborate briefly on the three factors that
characterize systolic arrays as they were
originally proposed, namely technology,
parallel/pipelined processing, and appli-
cations. These factors also identify the rea-
sons for the success of the concept, namely
cost-effectiveness, high performance, and
the abundance of applications for which
systolic arrays can be used.

Technology and cost-effectiveness.
Nowadays, mature VLSI/WSI technology
permits the manufacture of circuits whose
layouts have minimum feature sizes of 1 to

3 microns. The effective yields of
VLSI/WSI fabrication processes make
possible the implementation of circuits
with up to half a million transistors at
reasonable cost-even for relatively small
production quantities. However, the
advantages ofthis technology are not fully
realized unless simple, regular, and modu-
lar layouts are used. Systolic arrays
attempt to meet these topological con-
straints by using simple processing ele-
ments that, together with a simple
interconnection pattern, are replicated
along one or more dimensions. Cost,
regularity, and modularity are factors
leading to the design and optimization of
individual processing elements and their
respective interconnections. Considera-
tion of these three factors indicates that
processor arrays are cost-effective engi-
neering solutions to the problem of build-
ing systems with many processing
elements.
The main difference between the design

of systolic arrays and that of other inte-
grated systems of comparable complexity
is illustrated in a general way in Figure 1.
The Y-chart shown in the figure is a con-
venient and succinct description of the
different phases of the process of design-
ing VLSI systems.6'7 The axes of the Y-
chart correspond to orthogonal forms of
system representation, and the arrows rep-
resent design procedures that translate one
representation into another. A top-down
design procedure (that is, one that
progresses from more complex compo-
nents to simpler subcomponents) can also
be indicated-by arrows drawn along each
axis and pointed toward the origin. While
many different design approaches and-
their corresponding Y-charts-are possi-
ble, design is typically carried out through
successive refinements. In this process, a
component's functional specification is
translated first into a structural represen-
tation and then into a geometrical descrip-
tion in terms of smaller subcomponents;
the functional description of each of these
subcomponents must then be translated
into structural and geometrical descrip-
tions in terms of even smaller parts, and so
on. The line arrows shown in the figure are
intended to convey, in a general way, the
flow of this process for systolic arrays
versus more conventional systems. Since
a systolic array consists of a large number
of a few types of modules, the process of
refining the overall system and designing
every subcomponent is faster and simpler
than it is in systems with the same size but
a much larger number of module types.

Table 1. Applications for which systolic
designs are available.

This is conveyed graphically in Figure 1 by
means of large arrows showing that in the
design of a systolic array, one can proceed
faster and more directly to the design of
lower-level components of the system than
in traditional design.

Commercially available systolic-array
chips with 10 to 100 simple, 1-bit proces-

July 1987

Signal and Image Processing and
Pattern Recognition

FIR, IIR filtering, and ID
convolution

2D convolution and correlation
Discrete Fourier Transform
Interpolation
ID and 2D median filtering
Geometric warping
Feature extraction
Order statistics
Minimum-distance classification
Covariance matrix computation
Template matching
Seismic signal classification
Cluster analysis
Syntactic pattern recognition
Radar signal processing
Curve detection
Dynamic scene analysis
Image resampling
Scene matching

Matrix Arithmetic

Matrix-matrix multiplication
Matrix triangularization
QR decomposition
Sparse-matrix operations
Solution of triangular linear systems

Non-Numeric Applications
Data structures-stacks and queues,

sorting
Graph algorithms-transitive closure,
minimum spanning trees

Connected components
Language recognition
Dynamic programming
Arithmetic arrays
Relational database operations
Algebra

13

functional structural
initial specification

algorithms computing system

instructions processing element

arithmetic statements \ rgister-transfer

logic operations gates

transistor /~

Cell -(Q

final design chip

board

geometrical

Figure 1. A Y-chart that shows the process of designing algorithmically specified
VLSI digital systems.

sors exist; these chips sell for less than one
hundred dollars apiece. Other chips,
including microprocessors and digital-
processing chips, both of which can be
used as building blocks in systolic arrays,
are also available-at even lower cost. Sys-
tolic arrays with thousands of processors
can be built by assembling many such
building blocks (chips) at total prices that
range from ten thousand to a hundred
thousand dollars and depend on the com-
plexity of each processor.

Parallel/pipelined processing. Systolic
arrays derive their computational effi-
ciency from multiprocessing and pipelin-
ing. Multiprocessing is a natural
consequence of the activities going on
simultaneously in various processing ele-
ments of the array. Pipelining can be
thought of as a form of multiprocessing
that optimizes resource utilization and
takes advantage of dependencies among
computations. In systolic arrays, data
pipelining reduces the input/output-
bandwidth requirements by allowing a
data item to be reused once it enters the

array. Typically, inputs enter the array
through peripheral processing elements
and are propagated to neighboring
processing elements for further process-
ing. These movements of data through the
array take place both along a fixed direc-
tion in which a link exists between neigh-
boring processing elements and in a
periodic manner.

In addition to data pipelining, systolic
arrays are also characterized by computa-
tional pipelining, in which information
flows from one processing element to
another in a prespecified order. This infor-
mation can be interpreted by the receiver
as data, control, or a combination of both.
Each output is computed by the
execution-at different times and in a
predetermined sequence-of several oper-
ations in a number of processing elements;
the execution is performed in such a way
that the output generated by one process-
ing element is used as an input by a neigh-
boring processing element. While
operations can occur as data flows through
each processor, the overall computation is
not a dataflow computation, since the
operations are executed according to a

schedule determined by the systolic-array
design. After a processing element gener-
ates an intermediate output and sends this
output to the element's neighboring
processing elements, the element computes
another intermediate output. As a result,
processing resources are utilized effi-
ciently. In the general case, each process-
ing element can be constructed as a
pipelined processor. Such construction
results in the so-called two-levelpipelined
systolic array and in even higher
throughputs.

Applications and algorithms. Algo-
rithms suitable for implementation in sys-
tolic arrays can be found in many applica-
tions, such as digital signal and image
processing, linear algebra, pattern recog-
nition, linear and dynamic programming,
and graph problems. In fact, most of the
algorithms in the listed applications are
computationally intensive and require sys-
tolic architectures for their implementa-
tions when used in real-time environments.
The acceptance of this fact is evidenced by
the existence of prototype and production
systolic arrays for modern real-time digi-
tal signal processing systems. The
manufacturers of these arrays include,
among others, companies such as ESL-
TRW, Hughes, NCR, GE, Hazeltine, and
Motorola. When systolic arrays were first
proposed, they were intended for applica-
tions with two important sets of charac-
teristics. First, these applications require
high throughput and large processing
bandwidth, possibly at the cost of
increased response time. In other words,
it is more important to keep up with the
flow of data than to generate a set of out-
puts for a given set of inputs as quickly as
possible. Second, these applications can be
efficiently supported by algorithms that
can be implemented on arrays consisting
of a few types of simple processing ele-
ments; the arrays have simple controls and
input/output ports in the peripheral
processing elements. These algorithms are
characterized by repeated computations of
a few types of relatively simple operations
that are common to many input data
items. Often the algorithms can be
described by programs with nested loops
or by recurrence equations that describe
computations performed on indexed data.
In addition, the pattern of generation and
usage of data by different operations dis-
plays some regularity and uniformity,
which means that the resulting communi-
cation requirements can be met by the
localized interconnections.

COMPUTER14

Implementation issues

Given the technical and economic prin-
ciples that assure the soundness of the
systolic-array concept, one needs to con-

sider the issues involved in implementing
a system for a specific application. Some
of these issues are briefly discussed here.

General-purpose and special-purpose
systolic systems. Typically, a systolic array
can be thought of as an algorithmically
specialized system in the sense that its
design reflects the requirements of a spe-

cific algorithm. However, it may be desir-
able to design systolic arrays that are

capable of efficiently executing more than
one algorithm for one application or more.
Two approaches are possible in designing
these "large-purpose" systems, and a

compromise between the two is often
found in many actual implementations.
One approach is based on adding hard-
ware mechanisms so as to reconfigure the
topology and interconnection pattern of
the systolic array and to emulate the
requirements of a specialized design. A
concrete example of this approach is the
Configurable Highly Parallel computer
(CHiP),8 which has a programmable lat-
tice of switches for reconfiguration pur-

poses. The other approach uses software
to map different algorithms into a fixed-
array architecture. As is the case with the
approach behind other general-purpose
parallel computers, this approach may

require the use of programming languages
capable of expressing parallel computa-
tions, as well as the development of trans-
lators, operating systems, and pro-
gramming aids. These requirements apply,
for example, in the case of Warp,9 a sys-
tolic array developed at Carnegie Mellon

University. For each algorithm, the

designer needs to identify the efficient sys-
tolic designs and mappings and the appro-
priate techniques to use. The issue of

appropriate techniques is of great impor-
tance, since the final performance, cost,
and correctness of the design are governed
by these techniques.

Design and mapping techniques. To

synthesize a systolic array from the
description of an algorithm, a designer
needs a thorough understanding of and
familiarity with the principles behind four

things: systolic computing, the applica-
tion, the algorithm, and the technology.
Such skilled designers can provide excel-
lent heuristic designs for important

algorithms. However, the process is slow
and error prone and may require extensive
simulations, and the resulting designs are
not guaranteed to be optimal or correct.
Progress has been made in the develop-
ment of systematic design techniques to
automate this process. 10 These techniques
are unlikely to replace the designers com-
pletely; instead, they will provide tools and
formal concepts to assist designers in
searching for diverse and desirable designs
for a given application. Most of these tech-
niques are concerned with the derivation
of a relatively high-level specification of
the array architecture from a description
of the algorithm. Typically, such a speci-
fication includes the size and topology of
the array, the operations performed by
each processing element, the order and

Many specialized
arrays can be seen as

hardware
implementations of a

given algorithm.

timing of data communication, and inputs
and outputs. To a limited extent, these
techniques can take into account techno-
logical factors and the relationship of the
systolic array itself to the rest of the sys-
tem. However, they are not complete; they
can only be used at the specification
level-and only in an indirect manner
there. Until more is learned about design
techniques that can be used conveniently
for detailed integration of system and tech-
nology, such integration problems will
continue to be left for the designer to solve.

Granularity. The basic operation per-
formed in each cycle by each processing
element in the various systolic arrays can
range from a simple bit-wise operation, to
word-level multiplication and addition,
and even to execution of a complete pro-
gram. The choice of granularity is deter-
mined by the application, or the
technology, or both. For example, appli-
cations that use algorithms with basic bit-
level operators and data structures natu-
rally suggest that processing elements be of
a corresponding complexity. The same
choice of processing elements might, how-
ever, result from considerations such as
input/output-pin restrictions and the tech-
nology that may be used. In programma-
ble systolic arrays, the granularity may
also be determined by trade-offs between

July 1987

the desired degree and level of program-
mability. The Saxpy Matrix-I" is an
example of a programmable systolic com-
puter with large granularity, whereas bit-
level systolic arrays, like those discussed by
J.V. McCanny and J.G. McWhirter,6 are
special-purpose designs with low
granularity.

Extensibility. Many specialized systolic
arrays can be regarded as hardware
implementations of a given algorithm.
This view holds when there is a direct cor-
respondence between the operations and
variables of the algorithm and, respec-
tively, the processing elements and wire
links of the systolic array. In such a case,
the systolic processor can execute only a
given algorithm that is designed for a prob-
lem of a specific size. If one wishes to exe-
cute the same algorithm for a problem of
a larger size, then either a larger array must
be built or the problem must be parti-
tioned. The first approach is easy to con-
ceptualize and simply requires that more
processing elements be used to construct
an enlarged version of the original array.
However, as regards implementation, one
must remember that there may be factors
that do not affect performance in small
arrays but might affect it in larger systems.
These factors include clock synchroniza-
tion, reliability, power requirements, chip-
size limitations, and input/output-pin
constraints.

Clock synchronization. In large syn-
chronous systolic arrays, clock lines of
different lengths can introduce clock
skews and may require that a slower clock
be used. Possible approaches that avoid
this problem of clock skews include
designing systolic arrays that do not allow
data to flow in opposite directions and
using efficient layouts of the clock distri-
bution network.'2 An alternative to the
design of a globally synchronous array is
to achieve a self-timed system through the
use of asynchronous handshaking
mechanisms established between neigh-
boring processing elements. These self-
timed implementations are commonly
referred to as wavefront arrays. 13

Reliability. Simple laws of probability
can be used to explain why increasingly
large arrays are decreasingly reliable unless
redundancy is incorporated and fault-
tolerance mechanisms are available. In
fact, the reliability of an array of proces-
sors is equal to that of a processor raised
to a power of the number of processors in

15

the array. Since the reliability of a proces-
sor is a value less than one, the reliability
of the global array quickly approaches
zero as the number of processors increases.
Fault tolerance requires that faults be
detected and located so that faulty process-
ing elements can be replaced by opera-
tional spares through an appropriate
reconfiguration scheme. A fault-tolerant
systolic array may need additional hard-
ware to meet these requirements. In addi-
tion, if time redundancy is used or system
operation needs to be suspended for test-
ing purposes, the fault-tolerant array can
be slower than the original one. A good
fault-tolerant design has as its goal max-
imizing reliability while minimizing the
corresponding overhead. In systolic
arrays, possible approaches to fault toler-
ance include simple extensions of well-
known techniques used in conventional
digital systems. However, these techniques
do not take advantage of the characteris-
tics of either systolic arrays or the
algorithms they execute. Novel and suc-
cessful, though general, fault-tolerance
schemes'4 that take advantage of these
characteristics have been proposed for sys-
tolic arrays.

Partitioning of large problems. When it
is necessary to execute a large problem
without building a large systolic array, the
problem must be partitioned so that the
same algorithm can be used to solve the
smaller problem and so that an array of
small, fixed size can be used. The main
concerns are to avoid rendering the parti-
tioned algorithm incorrect and to avoid
increasing the complexity of the design sig-
nificantly. One approach identifies algo-
rithm partitions and an order of execution
of these partitions such that correctness is
preserved and the original array can be
used to execute each partition. 15 The per-
ceived result of this approach is that the
array "travels" through the set of compu-
tations of the algorithm in the right order
until it "covers" all the computations.
Another approach attempts to restate the
problem to be solved so that the problem
becomes a collection of smaller problems
that is similar to the original one and that
can be solved by the given systolic array. 16
While this second approach has less gener-
ality and is harder to automate than the
first approach, it may have better perform-
ance when it is applicable.

Automated design tools. The processing
elements and module libraries play an
important role in making the process of

designing special-purpose arrays of
processing elements faster and more cost-
effective. In addition to the many existing
tools for designing VLSI and WSI systems
that can be readily used in this process, the
regularity and algorithmic nature of sys-
tolic arrays permits the use of high-level
silicon compilers.7 At this time, the devel-
opment process is not fully automated; the
process will depend on future progress in
design automation and computer-aided
design tools.

Universal building blocks. Systolic
arrays cost less to implement than other
arrays because of their extensive replica-
tion of a small number of simple, basic
modules and because of their highly dense
and efficient layouts. It is worthwhile for

Integrating systolic
arrays into existing
systems may be

nontrivial because of
I/O bandwidth.

the simple building blocks to be carefully
designed and optimized, since the costs
involved are amortized over a large num-
ber of replicated circuits. The modular
design of systolic arrays allows designers
who want rapid prototyping of their ideas
to use off-the-shelf devices, such as
microprocessors, floating-point arithmetic
units, and memory chips. However, these
parts may not be designed for implement-
ing systolic arrays and may therefore be
inadequate to meet the design require-
ments. This has led to the development of
"universal building blocks"-chips that
can be used for many systolic arrays. The
cost of such development is, therefore,
amortized over replicated modules in
many arrays rather than concentrated in
simply one array. Commercially available
chips that are worthy of consideration as
basic modules include the INMOS Trans-
puter, the TI TMS32010 and TMS32020,
the NEC dataflow chip,PD 7281, Analog
Devices' ADSP2100, the Fujitsu MB8764,
and the National LM32900. Problems
involved in the use of programmable
building blocks include developing pro-
gramming tools to aid designers and
providing support for flexible intercon-
nections.

Integration into existing systems.
Although systolic arrays provide extensive

throughput, their integration into existing
systems may be nontrivial because of the
extensive input/output bandwidth
involved, especially when a problem has to
be partitioned and input data have to be
accessed repeatedly. Additional problems
that have to be solved for systems with a
large number of systolic arrays include the
interconnections with the host, the mem-
ory subsystem to support the systolic
arrays, the buffering and access of data to
meet the special input/output data distri-
butions, and the multiplexing and demul-
tiplexing of data when there are
insufficient input/output ports. The prob-
lems that must be faced are exemplified by
Mosaic,'7 a project being carried out at
ESL. The system consists of a statically
scheduled crossbar switch that connects
multiple Warp processors, each with local
memory modules, into a macropipeline.
The local memory modules are used to
store input data and restructure them into
the required input format.

The future
By the year 2000, it will be possible to

build integrated circuits with one billion
transistors-more than one thousand
times the number of devices available in
today's densest integrated circuits.'8
These incredibly large circuits will use
0.1-micron geometries made possible by
advanced optical, electron-beam, ion-
beam, or X-ray lithography. While the
high cost of setting up integrated-circuit
factories that can handle these technolo-
gies will certainly impact the initial cost per
chip, the main manufacturing limitations
will be in the design, verification, testing,
and packaging of such large circuits. In
addition, the percentage of the chip area
dedicated to interconnections could
increase to more than 80 percent. Systolic
arrays will take advantage of submicron
technologies without suffering from the
problems just mentioned, since they are
modular, have regular interconnections,
and are extensible. By the year 2000,
mature design and programming tools-and
extensive knowledge of suitable applica-
tions and algorithms will probably render
systolic arrays the architecture of choice
for submicron circuits designed for digital
signal processing, fast arithmetic, sym-
bolic processing, and intelligent databases.

Systolic arrays have triggered extensive
related work and research in the areas of
processor-array architecture, algorithm

COMPUTER16

design and analysis, and parallel program-
ming. These areas are often identified as
systolic architecture, systolic algorithms,
and systolic computing, respectively. As a
consequence, the principles behind systolic
arrays have gained an enlarged scope. That
is, systolic architectures are not necessar-
ily arrays of processors; systolic
algorithms may be very complex and may
not necessarily be executed in simple
processing elements; and systolic comput-
ing can take place in computers other than
systolic architectures. The prominent fea-
tures of systolic arrays are the processing
elements, which implement processes, and
the regular interconnection of multiple
processing elements. The processing ele-
ments and the interconnection of process-
ing elements can be implemented in
software, general-purpose microproces-
sors, or specialized hardware. Because of
this variety of implementation possibili-
ties, systolic arrays have, since the late
seventies, evolved to become cellular com-
puting at the algorithmic, programming,
architectural, and hardware levels. We
are, therefore, witnessing a trend in which
systolic computing is becoming a pervasive
form of multiprocessing. C1

Acknowledgments
We would like to thank the authors and

reviewers for helping to make this special issue
a reality. We are also grateful to Bruce Shriver,
the editor-in-chief of Computer, for his gui-
dance, directions, and help in preparing this spe-
cial issue.

Despite the large number of articles in this
special issue and despite our efforts to solicit
manuscripts on major systolic-array projects for
it, we were not able to cover all major projects
because of page limitations and the tight sched-
ule involved in preparing the issue. We realize
that there are many researchers, too numerous
to mention individually, who have made nota-
ble contributions to the development of systolic-
array research. We apologize for any inadver-
tent omissions, and we would like to
acknowledge their efforts here.

Last but not least, we would like to
acknowledge the pioneering study on systolic
arrays by H.T. Kung and C.E. Leiserson. With-
out their study, this special issue would not exist.

This project was supported by National
Science Foundation Grants DCI 84-19745 and
DCI 85-19649, as well as by the Innovative
Science and Technology Office ofthe Strategic
Defense Initiative Organization under Office of
Naval Research Grant 00014-85-k-0588.

References
I . H.T. Kung and C.E. Leiserson, "Systolic

Arrays (for VLSI), " Sparse Matrix Proc.
1978, 1979, Academic Press, Orlando, Fla.,

pp. 256-282; also in "Algorithms for VLSI
Processor Arrays," which is Section 8.3 of
Introduction to VLSI Systems, C. Mead
and L. Conway, eds., 1980, Addison-
Wesley, Reading, Mass., pp. 271-292.

2. F.C. Hennie, Iterative Arrays of Logical
Circuits, 1961, MIT Press, Cambridge,
Mass.

3. J. von Neumann, "The General Logical
Theory of Automata," in Cerebral
Mechanisms in Behavior- The Hixon Sym-
posium, L.A. Jeffries, ed., 1951, John
Wiley & Sons, New York; a more recent
work on cellular automata is Modern Cel-
lularAutomata Theory andApplications by
K. Preston, Jr., and M.J.B. Duff, 1984,
Plenum Press, New York.

4. D.L. Slotnick, W.C. Borck, and R.C.
McReynolds, "The Solomon Computer,"
Proc. AFIPS Fall Joint Computer Conf.,
1962, Spartan Books, Washington, DC, pp.
97-107.

5. H.T. Kung, "Why Systolic Architectures?"
Computer, Vol. 15, No. 1, Jan. 1982, pp.
37-46.

6. J.V. McCanny and J.G. McWhirter,
"Some Systolic Array Developments in the
United Kingdom," Computer, Vol. 20, No.
7, July 1987 (this issue).

7. Computer (special issue on new VLSI
tools), Vol. 16, No. 12, Dec. 1983.

8. L. Snyder, "Introduction to the Configura-
ble, Highly Parallel Computer," Com-
puter, Vol. 15, No. 1, Jan. 1982, pp. 47-64.

9 . M. Annaratoneet al., "Warp Architecture
and Implementation," Proc. 13th Int'l
Symp. Computer Architecture, June 1986,
Computer Society Press, Silver Spring,
Md., pp. 346-356.

10. J.A.B. Fortes, K.S. Fu, and B.W. Wah,
"Systematic Approaches to the Design of
Algorithmically Specified Systolic Arrays,"
Proc. 1985 Int'l Conf. Acoustics, Speech,
andSignalProcessing, 1985, IEEE, Piscata-
way, N.J., pp. 8.9.1-8.9.5.

11. D.E. Foulser and R. Schreiber, "The Saxpy
Matrix-1: A General-Purpose Systolic
Computer," Computer, Vol. 20, No. 7,
July 1987 (this issue).

12. A.L. Fisher and H.T. Kung, "Synchroniz-
ing Large VLSI Processor Arrays," IEEE
Trans. Computers, Vol. C-34, No. 8, Aug.
1985, pp. 734-740.

13. S.Y. Kung et al., "Wavefront Array
Processors: From Concept to Implementa-
tion," Computer, Vol. 20, No.7, July 1987
(this issue).

14. J.A. Abraham et al., "Fault Tolerance
Techniques for Systolic Arrays," Com-
puter, Vol. 20, No. 7, July 1987 (this issue).

15. D.I. Moldovan and J.A.B. Fortes, "Parti-
tioning and Mapping Algorithms Into
Fixed-Size Systolic Arrays," IEEE Trans.
Computers, Vol. C-35, No.1, Jan. 1986, pp.
1-12.

16. J.J. Navarro, J.M. Llaberia, and M.
Valero, "Partitioning: An Essential Step in
Mapping Algorithms Into Systolic Array
Processors," Computer, Vol. 20, No. 7,
July 1987 (this issue).

17. F.C. Lin et al., "MOSAIC: A Heterogene-
oUs Architecture for Signal Processors,"

Proc. 12th DARPA Strategic Systems
Symp., Oct. 1986.

18. B.C. Cole, "Here Comes the Billion-
Transistor IC," Electronics, Vol. 60, No.
7, Apr. 2, 1987, pp. 81-85.

Jos6 A.B. Fortes has been with the faculty of
Purdue University's School ofElectrical Engi-
neering since 1984.
He is interested in all aspects of parallel

processing, including the systematic design of
algorithmically specialized processor-array
architectures, parallel programming languages,
automatic parallelism detection and exploita-
tion techniques, and fault-tolerant computing.

Fortes has published over 20 technical papers
in journals and conference proceedings in the
areas of parallel processing, fault-tolerant com-
puting, and VLSI architectures. He has worked
on several projects in these areas in cooperation
with or with funding from NSF, ONR, AT&T,
RCA, and NCR.

Fortes is a member of IEEE and ACM.
He received his MSEE and PhD EE degrees

from Colorado State University and the Univer-
sity of Southern California in 1981 and 1983,
respectively.

Benjamin W. Wah is an associate professor in
the Dept. of Electrical and Computer Engineer-
ing and in the Coordinated Science Laboratory
of the University of Illinois at Urbana-
Champaign.
He was on the faculty of the School of Elec-

trical Engineering at Purdue University between
1979 and 1985.
His current research activities include paral-

lel computer architectures, artificial intelligence,
distributed databases, computer networks, and
theory of algorithms.
Wah was a Computer Society Distinguished

Visitor between 1983 and 1986.
He is an editor of the IEEE Transactions on

SoftwareEngineering, and the JournalofPar-
allel andDistributed Computing.
He received the PhD in computer science

from the University of California at Berkeley in
1979.

Readers may write for information about this
special issue to Jose Fortes, Purdue University,
School of Electrical Engineering, West
Lafayette, IN 47907 or to Benjamin Wah, Uni-
versity of Illinois at Urbana-Champaign, Coor-
dinated Science Laboratory, 1101 W.
Springfield Ave., Urbana IL 61801.

July 1987 17

