Guest Editor’s
Infroduction

Se June Hong
IBM T J. Watson Research Center

The main difference
between expert
systems and
conventional
programs is in the
degree of separation
between declarative
knowledge and the

component.

run-time procedural

represent a relatively new program-

ming approach and methodology,
one that evolved and is still evolving as an
important subarea of artificial intelligence
research.

The main difference between expert sys-
tems and conventional programs lies not
in the delivery of expertise, for many con-
ventional programs can perform ‘expert’’
tasks. Rather, it lies in the way the pro-
grammer makes use of the different degree
of separation between the dynamics of
when to do what to perform a task on the
one hand, and the “‘static’’ (that is, non-
procedural) application-domain knowl-
edge on the other hand.

In early programs, data and code were
often intermixed. Modern-day programs
generally have clearer separation between
data and program constructs. The expert-
systems approach permits even greater
separation by providing nonprocedural
constructs on a still higher level. Such

E xpert (or knowledge-based) systems

0O018-9162/86/0700-0012501.00 © 1986 IEEE

separation usually allows more flexibility
in generating and maintaining the pro-
gram, as well as greater ease of under-
standing, at the cost of run-time overhead
necessitated by the underlying mech-
anisms that support it. This kind of trade-
off is well demonstrated by comparing
logic simulation programs: compiled
simulation versus table-driven simulation.

For many applications, especially those
we usually think of as belonging to some
domain of expertise, it is usually impossi-
ble to define the total flow of actions taken
by a human problem-solver. Expertise is,
however, often describable in bits and
pieces, each relating some small situation
context and the actions appropriate for the
situation. Expert systems provide a
mechanism (often referred to as an in-
ference engine) to thread these pieces
together dynamically at run-time so as to
successfully complete a task. Conven-
tional programming basically allows two
simple options:

COMPUTER

e test and branch, or

¢ do the next action in the list.
While these two are sufficient for any pro-
gramming task, programmers suffer if
they must write programs at this level
when the domain involves expertise that is
not thus resolvable.

Characteristics of an
expert

An expert not only possesses a store of
definitional (or declarative) knowledge of
a domain, but also can quickly apply the
knowledge to a given task. Therefore, to
emulate the problem-solving skills of an
expert, it is not sufficient to encode the
declarative knowledge separate from the
procedural component of the expertise,
leaving the latter to proceed in the fixed
way provided by an inference engine. A
good example of this is a chess program
written in a few pages of Prolog, complete
with a goal to checkmate. With only the
depth-first backtracking mechanism of
Prolog, it would take eons to generate the
moves for a winning play—hardly an ex-
pert player’s behavior. Procedural knowl-
edge in the expert-systems context ad-
dresses issues at a much higher level (that
of determining the relevancy of actions
and subgoals) than the notion of instruc-
tion flow found in conventional programs.

Three things are essential to being an ex-
pert. First, an expert has knowledge of the
concepts relevant to the domain, its tax-
onomy, and interrelationships among
them; if necessary, the expert can solve
novel problems by reasoning from the do-
main principles. Second, an expert has a
wealth of situation-specific, ready-made
answers or partial answers that shortcut
the problem-solving process. Third, an ex-
pert has the ability to recognize oppor-
tunities for using such shortcuts, and in-
vokes the right ‘‘situation-action pair’’ so
that focused progress is made toward com-
pleting the given task.

The state of the art

Declarative knowledge. There is a
reasonably useful array of schemes to
represent this first kind of knowledge,
although most of them can describe only
simple relationships among concepts.

July 1986

Theorem-proving techniques can be used
for reasoning from the domain principles,

-if no surface heuristics are available. How-

ever, theorem-proving is inherently expen-
sive computationally, and the burden is on
the programmers to find as many short-
cut rules as possible to minimize ‘‘deep
reasoning.”’ Most of the current genera-
tion of expert systems relies solely on the
situation-action paradigm and gives up in
those cases where only deep reasoning can
provide the solution. Providing special-
purpose reasoners, and representations
for efficient deep-reasoning capabilities in
specific domains, is an active area of Al
research.

Ready-made knowledge. Handling the
second type of knowledge is the forte of
state-of-the-art expert systems. The
situation-action knowledge is imple-
mented as demons, as actions to be taken
on an if-needed basis within a frame, and,
most commonly, as explicit rules. The ini-
tial success of expert systems was largely
due to their ability to capture this kind of
knowledge and make inferences with it.
Still, there is much progress to be made in
improving the expressivity of the rule lan-
guage. Inference engines that invoke these
rules in sequence are currently rather in-
flexible, regardless of whether the se-
quencing is basically goal driven or data
driven. Rules usually describe appropriate
actions in a given situation, but whether
doing the consequent action now is rele-
vant to the task at hand is often not
known. Most of the current-generation in-
ference engines, both goal driven and data
driven, provide depth-first invocation of
rules, with some limited variations.

Meta-knowledge. The third kind of
knowledge is perhaps the hardest to elicit
from an expert—even when the program-
mer is the expert. Imagine rules as seg-
ments of a flowchart that is cut up into
pairs consisting of a ‘‘test’’ diamond
followed by a “‘procedure”” box. Without
knowing which segment should follow
another segment, it would take an enor-
mous amount of trial and error for some-
one to perform the program tasks man-
ually—if they could be performed at all.
Exaggerated though the analogy may be,
essentially this difficulty is reflected in the
inference. mechanisms that are in use
today. Meta-rules (the use of tags or flags

An expert not only
possesses a store of

definitional
knowledge of a

domain, but also can
quickly apply the
knowledge to a given
task.

attached to data) and explicit control lan-
guages are attempts to harness this third
kind of knowledge; that is, the knowledge
of when to invoke what at various levels of
detail. Much of this procedural knowledge
(or meta-knowledge), which produces
focused progress in task performance,
may be common to all problem-solving ac-
tivities, while some must be domain spe-
cific. Either way, the means of capturing it
represents perhaps the weakest part of ex-
pert systems today. Consequently, this is
an active Al research area. The problem is
accentuated in engineering applications
that have many alternative methods and
high demand for procedural efficiency.

The field today

Expert systems expand the use of com-
puters to many applications for which they
weren’t being used at all or were being
used unsuccessfully within conventional
programming practices. Many successful
expert-systems applications are beginning
to appear in medicine, business, finance,
and engineering. Also, many tools for
building expert systems, in the form of
shells and programming environments, are
beginning to be commercially available.!

There have been high expectationsand a
corresponding flurry of activities in this
area. This brought on some myths and in-
flated expectations about the state of the
art and the limits of expert systems. Ready
availability of expertise, the need for intel-
ligent programmers, user-friendly inter-
faces, the sound practice of software
engineering principles, and convenient de-
velopment environments are no less im-
portant to expert-systems applications
than to traditional programs. Automatic
acquisition and compilation of knowledge

3

Automatic acquisition
and compilation of
knowledge is still a
goal of Al for which
research is just
beginning to yield
some very limited
results.

is still a goal of Al for which research is
just beginning to yield some very limited
results. Performance and verification con-
cerns are perhaps more serious for expert
systems than for conventional programs.
Yet, it is clear that more applications are,
indeed, enabled by this addition to soft-
ware technology. The articles in this issue
represent some of these engineering appli-
cations and some efforts at advancing the
state of the art so that more engineering
applications will be made possible.

In this issue

The purpose of this special issue is not
to give a survey or a tutorial on expert sys-
tems, but rather to share examples of engi-
neering applications that depict the advan-
tages, the current limitations, and the
kinds of tasks being addressed. Engineer-
ing applications may not be generically
different from the applications of expert
systems in other areas, but the articles here
present samples of what is stressed in engi-
neering applications. For an introductory
reading in expert systems, articles that ap-
peared earlier in Computer?* would
make a good start.

The articles selected for this issue were
chosen for the maturity of the applications
they describe, their appropriateness (in ad-
dressing some of the technical issues of ex-
pert systems), and because as a group they
present a balanced variety of applications
and R&D activities. Many of these articles
also demonstrate the need to integrate the
knowledge-based part of the system with
existing software and databases.

The first paper, by William Faught,
discusses four different applications built
on KEE. (KEE is a multi-paradigm pro-

14

gramming environment that features
frame-based knowledge representation. 3)
It emphasizes the importance of clear, visi-
ble models and advocates building a full
system by starting out with a bag of tools
or an intelligent workbench.

The next paper, by Giorgio Bruno, An-
tonio Elia, and Pietro Laface, describes
production scheduling for flexible
manufacturing systems, for which there is
no known algorithmic solution. The
authors make use of an intelligent,
discrete-event simulation that is written
partly in OPSS5 rules and partly in Fortran
code. (OPSS is a popular data-driven in-
ference engine. 6) Although they note the
flexibility and ability to incrementally de-
velop the system that this approach makes
possible, they report on the difficulty of
maintaining’ data integrity between the
two types of programs.

Gary Stroebel, Randy D. Baxter, and
Michael J. Denney present a planning,
design, and evaluation system for config-
uration of the IBM System/38 computer.
This application makes use of many ex-
isting programs in the course of perform-
ing a variety of tasks in an interactive ses-
sion. Performance modeling is in APL;
workload analysis, user-interaction han-
dling, and the configuration generator are
in Pascal. An evaluation function has been
implemented in three different versions:
Lisp, OPSS, and ESE. (ESE uses the goal-
driven inference in a manner similar to its
use in Emycin, with an additional mech-
anism to specify certain controls.”) The
global control and communication among
these different modules is patterned after
the blackboard model. The authors
observe that it was convenient to use shells
but add that they found them to be more
awkward at times than straight Lisp, a case
in point revealing the limited expressivity
of knowledge representation in the current
state of the art.

The blackboard architecture is intended
for capturing and utilizing the control
knowledge.® While this mechanism in its
full generality allows flexible and explicit
representation of high-level procedural
knowledge, the overhead makes it imprac-
tical for performance-oriented applica-
tions. Many systems implement a simple
form of such a mechanism.

Sarosh N. Talukdar, Eleri Cardozo, and
Luiz V. Ledo also make use of a simplified
blackboard model to coordinate several

different specialist modules in their sys-
tem, Toast. The domain deals with moni-
toring and controlling utility power sys-
tems as an aid to human operators. The
system has two parts: an off-line consulta-
tion part that has been implemented, anda
real-time, on-line control part that has yet
to be implemented. OPS5 has been
adapted to run concurrently within their
distributed problem-solving environment,
called Cops.

Frank Pipitone reports on an expert
diagnostic system for electronic circuits.
The system has information on failure
probability, a list of tests, and a list of
costs. The system finds the ‘‘best next
test’’ to apply, and upon receipt of the out-
come, updates the “‘current resolution’’
listing. This system is unique in that ex-
plicit probability calculation is directly
used with inferences made from compo-
nent-wise behavioral rules and a com-
ponent connectivity description. This sys-
tem is written in Franz Lisp.

P. A. Subrahmanyam’s Synapse system
will be a large, complex system when com-
pleted. Intended for designing VLSI chips
from specification to physical layout, the
system is designed to deal with multilevel,
multiperspective descriptions of the chip
design in progress. Maintaining an alge-
braic model of the intended VLSI func-
tion, the system makes a series of refine-
ment transformations on the model by use
of production rules. This system also in-
terfaces to many existing programs and to
special-purpose hardware. The theorem-
proving part is written in Pascal, the
manipulation of algebraic models is done
by Macsyma, algorithmic CAD work is
done by a VLSI workstation, and the rule-
based expertise is implemented with the
KEE system.

The next two articles describe mechan-
ical-design systems. David C. Brown and
B. Chandrasekaran discuss a language
designed to capture the task-level knowl-
edge used in creating routine designs.
‘““‘Routine design’’ refers to those design
problems in which the intended function is
well understood and the basic configura-
tion of the design is known. (Nevertheless,
the designer has to make design choices
based on complex requirements, and then
refine and specialize the chosen configura-
tion.) This article represents a research ef-
fort to provide knowledge representation
closely matching a particular kind of ex-

COMPUTER

pertise, in this case that of routine
mechanical design.

Sanjay Mittal, Clive L. Dym, and
Mahesh Morjaria, on the other hand, at-
tack nonroutine design—for paper-trans-
port systems. Their article identifies, in
terms of generate-test-analyze-modify
cycles, necessary concepts for searching
through a large design space. Their use of
multiple specialists to handle design
subgoals is similar to Brown and Chan-
drasekaran’s. Their system already con-
tains over 1000 objects implemented in
Loops. (Loops is a multiparadigm pro-
gramming environment that features
object-oriented style.®) The authors also
detail the experience in knowledge acquisi-
tion that they gained, which resulted in a
100-page document of paper-handling sys-
tem expertise.

The last paper is by Yi-Tzuu Chien and
Jay Liebowitz, who present a variety of
defense-oriented application areas, along
with system-level requirements. The
authors point out a list of advances yet to
be made before such expert systems can be
practically implemented. These require-
ments and areas of necessary further pro-
gress are not unique to defense applica-
tions, nor to engineering applications. []

Acknowledgments

I would like to thank Mike Mulder, the
editor-in-chief of Computer, and the
designated member of his editorial board,
the willing and able Ralph Preiss, who
read all the manuscripts and with whom I
consulted during the preparation of this
special issue. I thank all the reviewers for
their thoughtful reviews and all the
authors who submitted their work for con-
sideration in this issue. Eric Mays and Jim
Griesmer helped me in selecting the
reviewers and provided me with a number
of helpful suggestions for this introduc-
tion. Last but not least, I would like to
acknowledge the able secretarial help
given me throughout the process by
Evelyn Zoernack.

References

1. Donald A. Waterman, A Guide to Expert
Systems, Addison-Wesley, Reading,
Mass., 1985.

July 1986

2. Dana S. Nau, “Expert Computer Sys-
tems,”’ Computer, Feb. 1983, pp. 63-85.

3. Computer, special issue on knowledge
representation, Oct. 1983.

4. F. Hayes-Roth, ‘‘Knowledge-Based Ex-
pert Systems: A Tutorial,”” Computer,
Sept. 1984, pp. 11-28.

5. R. Fikes and T. Kehler, ‘““The Role of
Frame-Based Representation and Rea-
soning,”’ CACM, Sept. 1985, pp.
904-920.

6. L.Brownston et al., Programming Expert
Systems in OPSS5, Addison-Wesley,
Reading, Mass., 1985.

7. P. Hirsch et al., “Interfaces for Knowl-
edge Base Builder’s Control Knowledge
and Application-Specific Procedures,”
IBM J. R&D, Vol. 30, No. 1, Jan. 1986,
pp. 29-38.

8. B. Hayes-Roth, ‘A Blackboard Architec-
ture for Control,”’ Artificial Intelligence,
Vol. 26, No. 3, July 1985, pp. 251-321.

9. Mark Stefik et al., ‘‘Knowledge Program-
ming in LOOPS: Report on An Exper-
imental Course,”” AI Magazine, Vol. 4,
No. 3, Fall 1983, pp. 3-13.

4

Se June Hong received his BSc degree in elec-
tronic engineering from Seoul National Univer-
sity in 1965, and his MS and PhD degrees in
electrical engineering from the University of
Illinois in 1967 and 1969, respectively. He then
joined IBM Poughkeepsie Laboratory, work-
ing in the areas of fault-tolerant computing and
design automation. He joined IBM Thomas J.
Watson Research Center at Yorktown Heights,
New York in 1978. He is currently a senior
manager in the Computing Technology Dept.,
responsible for projects in computer algebra,
natural language, education, and knowledge-
based programming.

During the academic year 1974-75, Hong was
a visiting associate professor at the University
of Illinois, Urbana. He was a visiting professor
at the Korea Advanced Institute of Science and
Technology (KAIST) for the month of October
1980.

He received an honorable mention award for
Outstanding Young Electrical Engineer in 1975
and three outstanding innovations awards from
IBM. He served as a Computer Society
Distinguished Visitor, 1972-74; the guest editor
of the special issue on reliable and fault-tolerant
computing of IEEE Transactions on Com-
puters, which appeared in July 1982; and as a
member of the Ad Hoc Visiting Team for the
IEEE Engineering Accreditation Board,
1979-84. He is currently a member of the
Edison Medal Awards committee.

Hong is a fellow of IEEE and a member of
ACM, MAA, ACL, AAAI, KSEA, and Sigma
Xi.

Readers may write to Se June Hong about
this special issue at IBM T. J. Watson Research
Center (31-206), PO Box 218, Yorktown
Heights, NY 10598.

/

Tutoriak:
THE 4th INTERNATIONAL CONFERENCE ON

October 28-30, 1985-Chicago, Binois

36 papers organized into 13 sessions. This con-
ference was concerned with both principles and
pragmatics, with the major theme being “‘the use
of ER concept in knowledge representation.’”

350 pp.

Order #645

Proceedings—The 4th International
Conference on Entity-Relationship
Approach

Nonmembers —$45.00
Members—$22.50

Handling Charges Extra

Order from IEEE Computer Society
Order Dept.

PO Box 80452, Worldway Postal Center
Los Angeles, CA 90080 USA
(714) 821-8380

15

