
can be approached scientifically. However, before a formal science of
can be developed, several principles must be established, including
the continuous nature of the design verification process.

Workshop Report

e Science of Design
Mario J. Gonzalez, Jr.

University of Texas at San Antonio

"Systems theory appears to be
driven by-and follows the develop-
ment of-technology. For example,
the theory of linear systerms lagged far
behind the actual use of those sys-
tems. Similarly, today our theory for
the proper use of multidimensional,
multivariable, distributed, nonlinear,
testable electronics systems lags
behind the actual implementation of
these systems. The most widely
touted system architecture today is
distributed functional processing. The
main challenges here are how compli-
cated large scale systems can be
distributed into optimal functional
blocks, how systems which are already
broken up into non-optimum and ad
hoc functional blocks can nevertheless
be used in optimum ways, and how
dedicated processors/controllers can

be used to synthesize analog and
digital functions."
So stated William J. Dejka of the

Naval Ocean Systems Center, ad-
dressing the Workshop on the Science
of Design held last year at the Univer-
sity of Texas at San Antonio. Though
he was quoting from a report (un-
published) on a workshop held nearly a
year earlier, his remarks were directly
relevant to the issue raised in this
workshop.
"In the past," Dejka continued, "a

system design criterion has been the
minimization of the number of compo-
nents. Entire theories have been
erected based on the minimization of
hardware components in producing a
function. Later, the number of com-
ponents was dropped and the number
of 'states' was instituted as the
predominant criterion.
"Today, instead, a dominant cri-

terion is the time required to perform
the function. Time has become the

principal parameter in systems opera-
tion, particularly for military systems
which must function in real time and
yield correct decisions and actions
within fractions of a second. It is
necessary to determine measures of ef-
fectiveness of different implementa-
tions for producing the required func-
tions. These measures should include
the hardware involved, the algorithm
used, and the system architecture-all
interrelated.
"The second important measure is

the regularity, or ordered nature, or
structure of the implementation. This
bicomes important in considerations
of system verification, testability and
fault diagnosis among others.
"The concept of system regularity

appears to be quantifiable," he con-
tinued, "inasmuch as successful ef-
forts have been made in the past to
quantify the regularity of data.
"The expansion of the idea to sys-

tems is a giant step, but it is conceiv-
able and useful. Such systems would
have superior testability and superior
reliability and maintainability. These
are also dominating criteria for future
systems."
Dejka went on to emphasize the im-

portance of quantifying the architec-
ture selection process. The selection of
an architecture to solve a particular
problem should be based on an objec-
tive, quantifiable methodology in-
stead of on a subjective assessment of
problem requirements and architec-
ture capabilities. With respect to-the
science of design, he said, this means
that we need to quantify th 'work" in
an algorithm in addition to traditional
parameters such as time constraints
and storage. We need techniques for
mapping algorithms to standard
building blocks or new architectures.

0018.9162/79/1200-0112$00.75 1979 IEEE

This mapping is an abstraction which
should be quantified (formalized) to
minimize subjectiveness and to pro-
mote automated translation from the
requirements space to the solution
space. This mapping should occur in
the early or conceptual stages of
design and should consider factors
such as the cost of redundancy,
operating and control procedures, I/O
requirements, system partitioning,
system and interface specifications,
queueing associated with the alloca-
tion of shared resources, and sub-
system integration. These techniques
must occur as early as possible in the
design process because it is much
harder to correct problems and make
things better after the design is well
into the engineering cycle.
After these introductory remarks

individual attendees presented their
views on a particular aspect of the sci-
ence of design based on personal ex-

perience, research interests, and the
specific demands of an individual's
work-related activities.

Major issues

During the first part of the work-
shop, attendees were asked to make
brief presentations on some aspect of
the science of design, and during these
presentations, discussion and debate
were limited. Upon completion of the
presentations, key issues were identi-
fied and discussed. Because most of
the attendees participated in each of
these discussions, the following sum-
mary does not attribute specific com-
ments to all contributors in each topic
area. Instead, the author of the topic
area is identified anda summary ofthe
comments made during the discussion
of each major issue is given.

COMPUTER

Design
design

112

Program generators (C. V. Rama-
moorthy). The ultimate objective of
program generators is to produce
error-free programs automatically in-
stead of manually in a manner charac-
terized by a reduced reliance on soft-
ware specialists. Even though the em-
phasis is obviously on a theory of soft-
ware design, the principles suggested
here may be extended to more general
application areas. A key element of
this objective is the construction of
models that enable us to determine
how successes and failures in our
creative design efforts can be encoded
in a knowledge base which becomes
available later on in the form of a
theory. With the proper theoretical
base, knowledge can be compacted
and used very effectively to simplify
teaching and learning processes. Since
this base does not exist, an essential
first step is the use of interaction to
provide the designer with design aids.
That is, we need analysis techniques
based on some sort of a theory or ex-
perience since that is where the foun-
dations of design may be found. The
design process can, therefore, be
viewed as the process of conveying
creative experiences into a form of
symbolism that other people can use
to advantage.
A cautionary remark from the audi-

ence suggested that full-fledged
automatic program synthesis is not
likely in the near future, although fair-
ly general program generators arenow
available in a number of application
areas (e.g., assemblers, editors, wire
list generators), suggesting that per-
haps in time more sophisticated prod-
ucts may be feasible. In the meantime,
one thing that we need to do `s to con-
sciously incorporate persolAal tricks
and practices into the theory of
design, particularly if we seek to auto-
mate the design process.
A significant outcome of this discus-

sion is that we need models and struc-
tures of design processed. We have
many programs and tools available to
us today, and in order to integrate
these tools we need an overall struc-
ture, an overall model of design. One
view of a design theory, then, is that of
a structure that allows us to integrate
all of the tools that are available to us.
Since it is apparent that experience

is a vital part of the design process, it
was suggested that design theory and
the science of design are evolutionary
processes whose achievement is best
served through human interaction
and the exchange of ideas and ex-
periences.

Is there a science of design? (Ray-
mond Yeh). An interesting question
raised during this discussion is
whether or not the issue of systematic
design can be viewed as a science. Is it
reasonable, perhaps, to compare the
design process to the less well-defined
but nonetheless exacting iterative
processes employed by a sculptor?
One definition of design is that it is the
process of creating a form to satisfy a
predefined specification. The initial
step in design is always an artistic act
which consists of a translation from a
problem requirement to a form that
appears to solve the problem. The next
step is to quantify this form in a man-
ner that is as rigorous and methodical
as possible.

In- software engineering the design
process can be viewed as a hierar-
chical, interconnected structure in
which the system structure is defined
at the highest level. At the next lower
level we find a definition of the design
structure and a design evaluation
methodology. In the design structure
we find the design documentation and a
statement of the design intention.
In view of this hierarchical structure

the design process can be viewed as a
family of designs characterized by a
constructive approach in which in-
termediate decisions are documented
and validated before initiation of sub-
sequent steps. The documentation
provides a history of decision pro-
cesses and serves as the basis for
changes suggested by the iterative
evaluation process. In order to imple-
ment the verification .obj ective
throughout the entire software design
process, at least two goals must be
achieved. First, it is necessary to build
mock-ups or logical models of the final
product in order to give the user tech-
niques for evaluating the reasonable-
ness of a result and for verifying the
correctness of the original specifica-
tion. Second, the evaluation process
must be defined in terms of quan-
titative criteria that can be used to ob-
jectively assess a result and thereby
minimize any subjectiveness in the
evaluation.
In summary, in order to develop a

science of design we need to examine
the elements of the hierarchical-struc-
ture closely. Furthermore, model
development should borrow from as
many disciplines as possible.

Problem-driven systems; design
correctness vs. proof of correctness
(Franco Preparata). This discussion

examined two major issues. The first
issue suggests that theoretical but
practically motivated studies have
not been mapped into the realm of the
practitioner. In effect, technology is
far ahead of science. We are facing a
world of parallel computation that is
not well understood. What we need to
do in order to design a system is to
start with the problem-that is, we
need to develop a methodology of
problem-driven systems. For a par-
ticular problemwe need toknowwhich
is the best system from the set" of
available alternatives, and we need to
know why particular decisions are be-
ing made. If efficiency is reduced in
order to achieve other design objec-
tives, for example, then this trade-off
should occur only as a result of an
awareness of the implications of the
trade-off. In order- to evaluate the
coupling between the problem and the
solution space, therefore, it is neces-
sary to consider more than perfor-
mance issues.
In this area we need research in re-

quirements mapping. That is, we need
to identify how we can structurally
analyze requirements and translate
them into evaluation attributes and
into design constraints. We need re-
search in representation schemes that
enable us to state requirements that
can be analyzed and decomposed into
subproblems that permit a more man-
ageable and systematic analysis ap-
,proach.

The second issue raised in this
discussion restates and reaffirms a
point made earlier by suggesting that
it is better to verify intermediate re-
sults than it is to attempt to prove the
correctness of a finished product. That
is, no matter how elegant proving and
testing techniques are, they cannot
replace design correctness. This obser-
vation is even more valid when applied
to parallel and distributed systems.
These systems are so much more com-
plex than serial systems, that verifica-
tion of algorithms after the fact may
be impossible. Anything that allows
us to do design verification in a less
time-consuming manner or produces a
design that is inherently more testable
is very important. In this regard,
design constraints that result in bet-
ter testability and better verification
even though the hardware may be
used less efficiently should be en-
couraged. This can be achieved by
limiting the number of combinations
of choices available to the designer. A
note of caution: we cannot always use

December 1979 113

procedures that were developed for se-
quential systems and expect them to
apply directly to parallel systems.

Abstractions for virtual architec-
ture synthesis (James Howard).
Throughout the workshop a need was
expressed for a methodology and
associated tools for requirements
analysis for a given problem. Among
the techniques proposed was the use
of abstractions (functions and data
abstractions) to obtain the data flow
and precedence graphs for the prob-
lem from the problem specifications.
Once these graphs are obtained, pro-
cessor and monitor abstractions can
be used to configure a series of virtual
architectures. A subset of these ar-
chitectures that satisfy both problem
and system specifications can then be
selected. If an architecture evaluation
scheme is available, then such a
scheme can be used to provide a rank-
ing of the members of this subset.
The building blocks to be provided

by increasingly sophisticated tech-
nology will not be totally suitable for
distributed systems. Some effort is
necessary to identify what the proper-
ties of basic building modules should
be for the distributed processing en-
vironment and to encourage semicon-
ductor manufacturers to incorporate
these features into their products. A
specific example would be the incor-
poration ofa built-in-test capability in-
to the processor module.

Algebraic theory for system evalua-
tion (Mike Andrews). The theme of
this discussion again served to
highlight the need for quantitative
techniques to evaluate alternative
system structures as part of an overall
objective of quantifying the science of
design. The approach outlined here
combines the topology of the struc-
ture derived from its connectivity
matrix and the information flow bet-
ween the nodes of the structure de-
rived from a utilization matrix to pro-
duce results that optimize one or more
measures. The theory proposed here
obeys established algebraic laws and
the laws of superposition and homo-
geneity, and permits the application of
information theory concepts. This
discussion served to point out that the
use of mathematical techniques is an
essential part of the science of design.

Automation of the design process
(Dan Siewiorek). The design process
can be said to undergo a series of
evolutionary changes. Initially design

proceeds in a non-systematic, ad hoc
manner. After experience in a dis-
cipline is gained, design principles
and metrics are obtained. A natural
and desirable extension of these steps
is the automation of the design pro-
cess. This discussion dealt with the
latter step by means of a data base of
tools or building blocks.
The input to this automated process

consists of a description of a target
system (i.e., its specifications), a
description of design trade-offs and
constraints, and a description of the
technology available. The output of
this process is an optimized design in
which parallelism is automatically de-
tected and exploited to the fullest ex-
tent.
In order to implement this idealized

scenario, we need to identify the basic
building blocks and specify their I/O
characteristics in an unambiguous
fashion. In order to accomplish this we
need to know what the parameters of
these modules should be since we
would like them to be reused and re-
worked later on, possibly to accom-
modate changes in the data structure,
technology, etc.
A relevant point here is that certain

design representations are easier to
build with than others, and as a result,
researchers should be invested to
determine what representations
should be used in a data base of this
type. This topic can be expanded to
allow for the fact that different repre-
sentations may be appropriate at the
various levels of the design process.
Other related research topics in-

clude the development of techniques
for evaluating alternative designs and
for implementing efficient search
strategies for the building block data
base.
An interesting sidelight here is the

suggestion that attempts to automate
the design process by means of a data
base of building blocks or modules
should incorporate inputs from a
number of disciplines. Initial sugges-
tions limited these disciplines to con-
trol theory and digital communica-
tions. The reason for suggesting the
former is that control theory involves
practices that are analogous to testing
and design verification and involves
control of complex dynamic systems
that need a contolling mechanism
similar to that of an executive in a
computer system. Subsequent re-
marks expanded the original sugges-
tion to include disciplines outside of
the engineering and digital systems
areas. The resultant interaction would

provide different ideas and perspec-
tives, and it would help us to deter-
mine if the science of design really
transcends several engineering levels.
Such an approach would enable us to
characterize the design process by rec-
ognizing the common design ap-
proaches that people use in different
fields. In so doing, we would be able to
develop an integrated set of tools by
codifying knowledge from several
disciplines. We would also be able to
consolidate requirements and provide
a common method of communication.

Software physics (Leon Traister).
This discussion dealt with an ongoing
effort designed to quantify the capaci-
ty of hardware systems and the
demands placed on a system by
algorithms-that is, systems and ap-
plication software units. This effort
can be referred to by the term "soft-
ware physics,",defined as the study of
the, quantitative and measurable pro-
perties of executable instructions and
their operands and their interactions
with computing systems equipment
and configurations. In effect, this effort
is designed to predict and control per-
formance or software power, defined
as the amount of work done per unit
time. This effort seeks to influence the
science of design by quantifying work
demands as a function of software
parameters such as program length,
levels of nesting, the number of times
a module is invoked, and the number
of iterations in a repetitive structure.
If it is possible to quantify the
demands of a workload and the capaci-
ty of a hardware structure (by means
of a configuration capacity handbook,
for example), then it is possible to
predict the response of the hardware
as a function of the demand.
Notice that the ability to express the

demands of an algorithm in a
measurable manner suggests that it
should be possible to compare the effi-
ciency of different solutions to the
same problem. This suggestion is not
totally valid, however, since it fails to
consider the characteristics of the tar-
get machine. A given algorithm can-
not be optimized until its impact on a
target machine is known.
At the present time this effort is

limited in scope since consideration
has been limited primarily to issues of
performance. In the attempt to in-
fluence the science of design, addi-
tional elements of the evaluation
space such as responsiveness, reliabil-
ity, availability, and modularity will
be considered.

COMPUTER114

Design aids (Larry Jack). In examin-
ing the elements of a science of design,
consideration must be given to the
nature of the design effort. This
discussion suggested that these aids
must be user oriented and must focus
on what have until recently been
secondary issues such as software,
testability and fault tolerance, and life
cycle cost. A major concern is that in
the top-down approach to design it is
easy to abstract the requirements of
the interfaces of the lower levels. In the
actual implementation, however, the
details of design must be addressed.
In doing this it is often discovered
that the available tools incorporate no
provisions for the impact of these
details in terms of time, cost, and
perhaps a basic inability to satisfy
design objectives because no provi-
sions were made or no facilities were
available for imbedding the necessary
capabilities in the original design.
What is needed, therefore, is the
development of design tools that per-
mit the detailslof implementation tobe
incorporated at the interface between
levels of a top-down design.

In addition, design aids should pro-

vide for optimnization at the system
level. That is, the total interrelation-
ship of all system components should
be considered instead of treating these
components separately.

Measurement of structural content
(Ralph Gonzalez). The objective of this
effort is to measure the structural
aspects of algorithms with emphasis
on the manner in which the structure
of the algorithm affects its testability
and the fundamental difficulty which
is required in order that it may be
understood. This approach is in con-
trast to the analysis of algorithms in
which the concrete computational
complexity of an algorithm is judged
by the amount of resources it uses dur-
ing its execution, expressed as a func-
tion of some parameter(s) of the input
data. In analysis of this latter type,
structure is viewed as important only
in the way it impacts execution time
resources.
The effort described here, on the

other hand, deals with general sys-
tems, of which computer algorithms

can be considered a powerful subset.
Structural entropy is a function com-
puted on a relational table system
description that attempts to quantify
the structural complexity for pur-
poses such as comparing one system
with another and making initial judg-
ments about the relative ease of
testing and maintainimng a system.

Structural entropy or structural
content is an area that is very impor-
tant to the theory of design. It is
necessary to define exactly what it is
andhow it can be used in terms of both
algorithms and systems.

The influence of data communica-
tions (Tilak Agerwala). The central
theme here is that we need to incor-
porate communications and control
issues into the science of design. The
reason: for many systems communica-
tions places tighter bounds on perfor-
mance than operation dependency
considerations. Actual communica-
tion time is very dependent on the
physical interconnection of the
elements of a parallel structure, and
the amount of communication can be

ENINEERING

SOFTWARE ENGINEERS

SYSTEM ARCHITECTS

SYTEK Inc., has immediate opportunities for talented professionals
who have the ability to work as:

*Operating System Architects
*Microprocessor System Designers
*Communication Protocol Designers
*Software Development Techniques Specialists

SYTEK, Inc., is a young company of skilled professionals providing
high technology systems engineering services to selected
government and commercial clients.

We are looking for articulate, academically trained individuals with a
strong practical outlook to provide the skills necessary to meet
current and projected business demands.

We offer an excellent compensation package which includes incentive
bonus, medical/dental insurance, tuition reimbursement, as well as a
pleasant, stimulating work environment.

If you are willing to meet the challenge of technological innovation, we
invite you to send a resume to:

OVT - V 1153 Bordeaux Dr.
- ^ s Sunnyvale, CA 94086

fAttn: Linda Kyle or

Call (408) 734-9000 for immediate consideration.

SYTEK, An Equal Opportunity Employer

December 1979

JOB OPPORTUNITIES
Sandia Laboratories is seeking.MS and PhD
level ap.plied computer scientists and com-
puter related electrical engineers to assist in
implementing a major change in architecture
to its central computing facilities. Specific
areas of interest include:

High Speed Computer Communications
Operating System Design
Computer Security
Computer Systems Simulation
File Access and Control

Preference will be given to those individ-
uals with experience on CDC 6000 and 7000
series computers. Please send resume and
salary history to:

John Wheeler
Division 3531
Sandia Laboratories
Box 5800
Albuquerque, N.M. 87185

Sandia Laboratories is located in the heart of
the sunny Southwest and offers a liberal
fringe benefit package containing 24 days
annual vacation. Recreation opportunities in
and around Albuquerque abound.

Sandia Laboratories
Equal Opportunity

Affirmative Actiorn Employer M/ F
U.S. Citizenship Required

115

affected significantly by the manner
in which data is distributed, by the
manner in which the problem is parti-
tioned, and by the number and types
of resources in the system. In addition
to traditional performance measures,
communications also impacts other
measures such as availability,
reliability, and fault tolerance, and the
coupling between parts of a system
can affect the fault containment prop-
erties of the system. To a significant
extent communication can also affect
the type of control (that is, operating
system) alternatives that can be used
in a particular system.

In seeking to incorporate com-
munications into the science ofdesign,
however, we find a serious lack of ac-
ceptable models. These models will
have to consider the conimunications
demands of algorithms and the extent
to which communications is likely to
be a bottleneck. To restate comments
made earlier, we need a method for

predicting system performance on the
basis of system characteristics.
Additional communication aspects

of the science of design suggest that
communications bottlenecks in
parallel structures may not reduce
system performance as much as the
contention caused by the sequential
access to shared data structures im-
posed by software locks. An area often
overlooked in model design is the pro-
blem of getting data into and out of a
system. System models often assume
that the data is available and concen-
trate on computational issues. Simi-
larly, data communication bandwidth
can be a serious limiting factor in
system reconfiguration upon occur-
rence of a fault.

Software science (Maurice Hal-
stead). In order for a set of systematic
activities to be referred to as a science,
it is necessary that these activities
possess certain characteristics. For

example, they should be experimental
innature-that is, they shouldprovide
metrics by means of which objective
evaluations can be made. In addition,
these metrics should be supported by
a theoretical foundation, and in order
to achieve the desired objectiveness
the metrics should be quantitative.
Finally, a science should be predictive,
and experiments in that science
should be reproducible.
Software science possesses these

characteristics and, therefore, quali-
fies as a branch of natural science.
Software science seeks to predict soft-
ware properties solely as a function of
some static properties on the software
itself, such as the number of operands
and the number of operators. A signifi-
cant outcome of ongoing effort in this
area has been to show that program-
ming effort grows as the square of the
volume (i.e., the size of the problem).
Using the techniques of this emerging
science it has been possible to quan-

116 COMPUTER

titatively confirm established ap-
proaches that suggest that a large pro-
gram should ' be broken up into
modules. Another outcome suggests
that the size of an operating system
can be predicted as a function of the
number of allocatable resources. The
addition of one more allocatable
resource, for example, can more than
double the size ofan operating system.
Software science suggests that

given the right inputs, we can predict
things -like the time required to
generate a particular program, the
number of errors that the resultant
product is likely to have, the effort (in
a quantitative sense) required to
generate a program, and the "com-
plexity" of a program.
Like the software work concept in-

troduced earlier, software science
seeks to provide a better understand-
ing of some key issues that we en-
counter as part of a larger science of
design.

Attributes for evaluation (Mario
Gonzalez). This discussion addressed
the previously raised issue concerning
the quantitative assessment of ar-
chitectures with respect to the
demands of a particular problem. This
need is becoming more acute in view of
the emergence of distributed architec-
tures and classification schemes or
taxonomies. The objective of the ap-
proach outlined here is to produce a
figure of merit to provide a ranking for
architectures that are considered as
candidates for the solution of a par-
ticular problem.
The first step in the approach is to

identify a set of evaluation attributes
that can be used to characterize
system behavior in a problem-
independent manner. The second step
is to objectively and quantitatively in-
dicate to what extent each distributed
structure possesses these attributes
and then to indicate the importance of
these attributes to the problem at
hand. In the final step these quan-
titative parameters are combined to
produce the desired ranking. -
Before this approach can be im-

plemented, two major difficulties
must be overcome. First, the size of
the attribute space must be reduced to
manageable proportions. Second, it
will be necessary to divide the
workload or problem space into
classes or intervals since the ranking
of attributes is not constant for all
variations of the problem. Instead, it
varies as a function of the demand or
workload. -

Summary
The following are the key issues or

findings identified in this workshop.
Where appropriate, related research
topics are also given.

1. We need to develop program
generators to produce error-free pro-
grams automatically. Research item:
develop models and structures of
design processes.

2. Design verification must be im-
plemented throughout the entire
design processes. Research items: (1)
Develop logical models to permit
verification of a specification. (2)
Develop quantitative criteria to per-
mit system evaluation.

3. We need to develop a methodol-
ogy for the design of problem-driven
systems. Research items: (1) Re-
quirements mapping-that is, struc-
turally identify requirements and
translate them into evaluation at-
tributes and into design constraints.
(2) Develop realistic models for
parallel systems.

4. It is better to verify intermediate
results than it is to prove the correct-
ness of a finished product.

5. We need a design methodology
that gives us testable designs.

6. Correctness and an understand-
ing of the design process must be ad-
dressed at an early stage in the life cy-
cle of a system.

7. The building blocks provided by
advanced technology will not be total-
ly suitable for distributed systems.
Research item: Identify the properties
of basic building modules for
distributed systems.

8. A natural and desirable exten-
sion of traditional design approaches
is the automation of the design pro-
cess. Research items: (1) Determine
what representations should be
employed in a data base used to
automate the design process. (2)
Develop techniques for evaluating
alternative designs.

9. The science of design should be
based on common design approaches
from a number of different disciplines.

10. The efficiency of an algorithm
cannot be maximized unless the
characteristics of a target machine are
identified. Research item: Develop
techniques for identifying and mat-
ching algorithm and architecture
characteristics.

11. We need to develop design tools
that permit the details of implementa-
tion to be incorporated at the interface
between levels of a top-down design.

12. Design aids should provide for
optimization at the system level.

13. Structural entropy or content
must be defined exactly in order for it
to be used in terms of both algorithms
and systems.

14. We need to incorporate com-
munications and control issues into
the science of design. Research item:
Develop models that consider thecom-
munications demands of algorithms
and the extent to which communica-
tions is likely to be a bottleneck.

15. We need to determine the ex-
tent to which the techniques and prac-
tices of software science are applicable
on a larger scale in the science of
design.

16. We need to quantitatively
assess the suitability of individual
distributed structures to the demands
of a particular problem. Research
item: Identify key evaluation at-
tributes and quantify the extent of
their presence in a system and the ex-
tent of their importance to a problem.

17. We need to explore the relation-
ship between reliability and fault
tolerance. Research items: (1) Develop
a theory for testing. (2) Determine how
a network of computers can be con-
figured to be fault tolerant.

The ideas proposed in this work-
shop can, in a very preliminary man-
ner, be used to map a requirement into
a final design in the manner shown in
Figure 1. R

Mario J. Gonzalez, Jr.,
has been on the faculty
of the University of
Texas at San Antonio
since 1977, where he is
an associate professor
of computer science.
From 1973 to 1977 he
was' on the computer
science faculty at

Northwestern University. From
1972-1973 he was a member of the
technical staff in the Advanced Systems
Group atTexas Instruments. Gonzalez is a
past co-chairman ofthe Technical Commit-
tee on Computer Architecture. His
primary interests are in the general area of
computer architecture with emphasis on
distributed computer systems. Gonzalez
received the BS, MS, and PhD in electrical
engineering from the University of Texas
at Austin in 1964, 1969, and 1971, respec-
tively.

December 1979 117

