“Any clod can have the facts,
but having opinions is an art.”

Charles McCabe,
San Francisco Chronicle

The Open Channel is exactly what the name implies: a forum for the free
exchange of technical ideas. Try to hold your contributions to one page
maximum in the final magazine format (about 1000 words).

We’'ll accept anything (short of libel or obscenity) so long as it’s
submitted by a member of the Computer Society. If it’s really bizarre we
may require you to get another member to cosponsor your item.

Send everything to Jim Haynes, Applied Sciences, UC Santa Cruz, CA

95064.

Prototype Programs

W. P. Dodd
University of Birmingham
United Kingdom

One of the panel sessions at the re-
cent Fourth International Conference on
Software Engineering was devoted to the
topic “Concept Modeling.” It was con-
cerned with how the software engineer
can determine exactly what the customer
requires, and the discussion hinged
around the importance of maintaining a
dialog between the implementors and
the customer. The need for this dialog
was emphasized even for those cases in
which there is no actual customer, and it
was suggested that in such cases there
should be a simulated discussion with a
hypothetical customer.

The panel members seemed, how-
ever, to restrict these dialogs to the
period up to the point of defining the
task specification; thereafter the
customer is, presumably, to live with
whatever is produced. The panel con-
sidered this situation analogous to the
dialog between the would-be purchaser
of a new house and the selected ar-
chitect; here also there are difficulties in
communicating concepts, and, despite
all the plans and sketches, once the
building has commenced, there is very

February 1980

little the customer can do to affect the
final structure. This may be a good
analogy for current practice, but such
practice is an inefficient and restrictive
approach to software design. Instead, |
would like to make a plea for the concept
of prototype programs, which was men-
tioned by the panel but was dismissed on
the grounds of cost.

In addition to considering that the con-
struction of prototypes is an activity that
we should be performing in any case, |
wonder if we are already producing them
without really admitting it. This idea is
suggested to me by the frequently made
statement that most (two-thirds) pro-
grammers nowadays are employed on
“program maintenance.” But not many
analysts/programmers seem to enjoy be-
ing known as software maintenance en-
gineers, unless perhaps they get called in
over the weekend on quadruple
pay—that doesn’t happen very often.
The fact is that not many of them are ac-
tually involved in maintenance; the large
majority work primarily in program or
documentation enhancement. Now sure-
ly this is very much akin to the refine-
ment of a prototype system until it ac-
tually meets the customer’s require-
ments. Such an approach is necessary
because, despite all our efforts at setting
up a dialog, the customer and the
engineer still speak somewhat different
languages.

0018-9162/80/0200-0081$00.75 © 1980 IEEE

If we set out to build an operational
prototype rather than the production ver-
sion first time out, we would have the
opportunity to maintain the customer-
designer dialog after the initial agreement
on the specification. This approach has
the advantage that the customer cannot
say the system is not correct just because
the prototype doesn’t match his require-
ments. Instead he can point out what
changes of the prototype he would like in
the production version and do so with a
great deal more precision because there
is something concrete on which to base
the discussion. The customer would ac-
quire more confidence in the software
engineer, and a large number of “main-
tenance” programmers would obtain a
justified rise in status and self-esteem,
since they would be working on the pro-
duction version of a system rather than
maintaining one that is inadequate.
There might even be an increase in pro-
ductivity, since engineers no longer
would face either the pressure of getting
the system right the first time or the
disappointment of its rejection as inade-
quate.

As to the argument against prototypes
on the basis of costs, if the above analysis
is correct, we are probably already pay-
ing the price and more in hidden ways.
In any case, why should we complacent-
ly assume we don’t need prototypes
when more established branches of engi-
neering, aeronautical engineering for ex-
ample, wouldn’t dream of not producing
a prototype?

The prototype concept may not be
tenable in all application areas, but, even
where there is no identifiable customer, it
may be more fruitful to demonstrate a
prototype version to potential pur-
chasers, thereby exhibiting flexibility
rather than a take-it-or-leave-it stance.

To return to the analogy of the archi-
tect-built house, obviously not many
people can afford a prototype house,
and not many houses, having been built,
can be rearranged, have their orientation
adjusted in some way, or easily have
rooms added on. But it is just this sort of
modification we are performing when we
customize a prototype program.

However, one aspect of the architect
analogy may work—the buyer’s oppor-
tunity to view similar houses designed by
the same architect. He can compare
them with the architect’s specification
description and drawings. This com-
parison provides examples for the dialog

between architect and buyer. In much

the same manner, a prototype program
can serve as the concrete basis of the
dialog between engineer and customer. ll

81

