Bruce D. Shriver
University of Southwestern Louisiana

The term “software engineering’’ was first intro-
duced nearly 10 years ago, at a NATO-sponsored
conference held in October, 1968, in Garmish,
Germany.' Since that time, a variety of tools to
assist in the specification, production, and manage-
ment of reliable software have been proposed.’
Although we are yet far from the visionary’s goal
of automatic generation of maintainable code, we
are making progress.

At least one of the reasons for this progress
is clear: Vast amounts of resources have been
spent by government as well as industry, both
here and abroad, to develop software engineering
tools and techniques. The record of many of these
efforts, contained in thousands of pages of tech-
nical journals and conference proceedings, reflects
a long-standing tradition of shared experiences in
the problems of software development: From the
earliest days of computing, professionals have
regularly and freely exchanged their views and
insights; even manufacturers and their customers
have joined forces in cooperative efforts to debug
large, complex software systems.

Firmware, however, has not enjoyed so happy
a tradition. Manufacturers are migrating more
and more of the user-visible primitives of their
systems down into microcode. As a result, both

May 1978

the firmware and the support and development
tools which are a part of the microcode production
and maintenance process, now typically regarded
as proprietary, rarely appear in the public literature.

And yet, in a great many respects micropro-
gramming is not different from classical program-
ming and could profit from the software engineering
techniques developed over the past decade. This
issue of Computer explores that thesis.

The first paper, by Davidson and Shriver, gives
an overview of current firmware engineering prac-
tices during microcode design, specification, con-
struction, verification, testing, debugging, and
maintenance. It also poses several open questions
related to the code production process. The second
paper, by Stockenberg and van Dam, develops a
method for analyzing the migration of primitives
in multilevel interpretive computing systems. A
very interesting aspect of this work is the perform-
ance prediction aspects of the analysis.

Many early workers in microprogramming pro-
posed that the use of firmware would narrow the
then-existing hardware/software gap—ie.. reduce
the communications problems existing between
the machine designer and the programmer. Later
workers often conceded that what actually hap-
pened was the introduction of two gaps: a firm-

0018-9162/78/0500-0019%00.75 ~* 1978 IEEE

19

ware/software gap and a hardware/firmware gap.
The engineers, microprogrammers, and program-
mers all spoke different machine languages and
used different development tools.

The last two papers are related to the hardware/
firmware gap: Barbacci and Parker present a case
history of using emulation (and, in particular,
microdiagnostics) to assist in the evaluation of
architecture descriptions. The paper by Fiala
describes some firmware engineering tools that
apply to hardware interfaces to a target machine.
These papers demonstrate a different set of needs
for firmware engineering from those shown in the
first two papers. Such a divergence in the con-
tents of these four papers demonstrates that
firmware engineering must be sensitive to the
issues of top-down design (e.g., language- and
system-directed architecture design) while also
being responsive to bottom-up design (the use of
microprogramming as a processor implementation
technology).

Taken as a whole, these papers should intro-
duce the reader to both the soft and hard aspects
of firmware engineering. I gratefully acknowledge
the help of the authors, referees, and Technical
Editor Jack Grimes for their assistance in putting
this issue together. W

References

1. Peter Naur and Brian Randell, Editors, Software
Engineering, NATO Science Committee Report, Jan-
uary 1968.

2. Ware Myers, ‘“The Need for Software Engineering,”
Computer, Vol. 11, No. 2, February 1978, pp. 12-25.

Bruce D. Shriver is a professor of
computer science at the University
of Southwestern Louisiana. Earlier he
t taught and conducted research at the
University of Aarhus in Denmark,
where he also co-directed a design
team in the design of a dynami-
cally microprogrammable processor,
MATHILDA. He has also taught
at California State Polytechnic Uni-
versity and was a National Science Foundation Fellow
for two years. He has had industrial experience with
special-purpose computer systems, process control sys-
tems, and user-machine interface problems.

Shriver received his PhD in computer science from
the State University of New York at Buffalo. He is a
member of ACM, the IEEE Computer Society, and
SIAM.

Text from:

“PROGRAM TESTING TECHNIQUES”
November 8, 1977 (289 pages)

A cross-section of current program testing technology,
arranged into the following sections: philosophy of test-
ing, theoretical foundations, tools and techniques, mea-
surement and planning, management and control, and

research and development.
Non-members — $13.50

Members — $10y

20 Use order form on p. 127.

and software systems.
wn-members — $25.00

HRCEEEDINGS

The First Annual Symposium on
cormpauter
application
in
medical
care

October 3-5, 977
Washington, DC.

Proceedings of the First Annual Symposium on:
“COMPUTER APPLICATION IN MEDICAL
CARE"”

October 3-5, 1977 (373 pages)

A foundation for the application of computers to medi-
cal care. Emphasis on issues of current significance such
as monitoring and interpretation of clinical results, arti-
ficial intelligence in medicine, and advances in hardware

Members — $18.50

COMPUTER

