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Two workshops on distributed pro-
cessing were held at Brown University
in 1976 and 1977, sponsored by the
Army Research Office, the National
Science Foundation, and the Office of
Naval Research. The workshops had
three goals:

(1) to classify various ongoing re-
search efforts, to identify salient
characteristics of distributed pro-
cessing, and to propose standard
terminology;

(2) to establish what constitutes
the state of the art, to discover
common areas of research, to ex-
change specific solutions that might
be generalized, and to determine
which techniques worked (or did
not) and why;

(3) to identify problem areas and to
indicate fruitful directions for future
research.

As might be expected, we were only
partially successful. This summary is
intended to convey the spirit of the
meetings and to provide an over-
view of the important technical inter-
changes. The actual detailed account
of the sessions is recorded in the full
transcripts, cited in the editors’ over-
view to this issue. Participants’ names
and affiliations are listed in the table.

Themes and viewpoints

As Philip Enslow points out in his
article in this issue, the field of
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distributed processing currently suf-
fers from the lack of a precise defini-
tion of the term. A frequent comment
throughout the workshop was, “But
that’s not distributed processing!”
We felt the meaning of the term
“distributed processing’’ should iden-
tify a specific set of research problems
and issues, and much argument there-
fore centered on identifying such
salient issues and trying to establish
whether they were new or unique
to distributed processing. There are
many dimensions (aspects such as
processors, data, and control) of a
system which may be distributed—as
Enslow again discusses—and each
dimension really has a spectrum of
values; therefore, where each person
draws the line between distributed
and nondistributed systems becomes
largely a matter of personal interpre-
tation. ;
Even though the researchers could
not agree among themselves, they
generally agreed that industry’s no-
tions of what constitutes distributed
processing are not rigorous enough.
Decentralized computing with mini-
computers or intelligent terminals
connected to a mainframe, in a star
or hierarchical configuration, is cer-
tainly a valuable technique. The par-
ticipants did not consider this to be
distributed processing in the general
sense, because either control remains
centralized, or frequent interaction
between cooperating processes on both
machines is lacking. Similarly, the
existence of a subnetwork over which

processors communicate does not in
and of itself mean the system performs
distributed processing.

Participants generally agreed that
distributed processing is made possible
by the price-performance revolution
in microelectronics. It has its historical
roots in satellite minicomputers that
relieve the load on mainframes, tightly
coupled multi- and parallel processors,
and loosely coupled networks. Many
of the advantages desired from dis-
tributed processing systems, such as
increased performance and availability,
are therefore familiar from studies and
implementations of multiprocessor
systems. The amount of technology
transferred from these fields, how-
ever, seems inadequate. Many parti-
cipants agreed that the single charac-
teristic distinguishing distributed
processing systems from -classical
architectures was decentralized system-
wide executive control, a concept
about which very little is known.
Douglas Jensen'’s article in this issue
discusses such control in more detail.
Other participants claimed distributed
processing could occur at any level —
architectural, operating system, or
application.

The ability of a distributed proces-
sing system to provide extensibility
seemed to be an important theme.
Basic building blocks might be
processor-memory pairs built from
conventional microprocessors or spe-
cially designed modules or ‘“cells.”
The number of modules needed would
be connected to a communication
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subnet of arbitrary topology, such as
a bus, ring, or other form, with hard-
ware-supported facilities for inter-
processor and interprocess communi-
cation.

Participants also agreed that the
field is still so young that little
formalism and few fundamental
principles have emerged. Most of the
papers and discussions dwelt on spe-
cific techniques, mechanisms, and
experimental results. As more exper-
ience is gained and the field matures,
more attention will presumably be
paid to methodology and the system-
atic study of design tradeoffs.

Majorissues

Interprocess communication. Inter-
process communication was a dividing
issue at both workshops. The argu-
ment centered on the comparison of
two forms of message communica-
tion; on one side, between processes
that have disjoint address spaces,
and, on the other, processes that
share memory.

In the Honeywell Experimental
Distributed Processor (HXDP), which
Jensen’s article describes, there is no
sharing of main memory; each pro-
cessor has its own private memory.
All interprocess communication occurs
via explicit messages along a common
bus. All processes are considered
equally remote from one another, so
all messages are transmitted on the
global bus, even if they are between
a source and destination in the same
processor. This type of interprocess
communication is sometimes said to
be inherently inefficient when com-
pared to memory sharing, the ineffi-
ciency being the main disadvantage
of a message mechanism. However,
in HXDP this inefficiency is amelior-
ated by implementing the message
mechanism in hardware. Software
implementations of similar message
mechanisms' may include means to
detect when the destination of the
message is in the same host as the
source and, if so, to bypass the
transmission of the message onto
the subnet, thereby increasing inter-
process communication efficiency.

The chief advantage of the message
mechanism, which Enslow regards as
a main requirement for distributed
processing, is that it permits auton-
omous processes to cooperate inde-
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pendently of their location in the
distributed processing system.

The Computer Modules (Cm*) Pro-
ject at Carnegie-Mellon University®
has a flexible interprocessor memory
access scheme. The Cm* architecture
consists of clusters of microprocessor-
memory pairs sharing memory seg-
ments that have uniform, protected
references to objects (both data and
program via a ‘‘capability’”’ mecha-
nism. This capability mechanism
forms the lowest level of abstraction
upon which both memory sharing and
message interprocess communication
are built. In those instances in which
memory sharing is utilized for inter-
process communication, access to the
shared memory is still controlled by
the capability mechanism. To use the
message mechanism one merely sends
information to a particular kind of
segment, a message segment. The
receiving process shares this message
segment and is able to read the mes-
sage. Once again the system insures
proper access via the capability mecha-
nism. Transmission of messages is
very fast since the capability to read
a message is transmitted rather than
the physical data itself (which has
variable length and is typically larger
than the capability).

There was much debate about the
relationship between logical and phy-
sical interconnections (‘‘coupling™’).
Some participants felt that on the
communication level there was a dis-
tinct difference between a message-
based system and a.shared-memory
system. The difference has a profound
effect on the level of cooperation be-
tween processes and hence the range
of suitable applications. In a message-
based system, explicit cooperation
may be required from software at the
destination; such cooperation may be
desirable, if it helps keep the system
running in the event of a hardware
component failure by localizing errors.
In contrast, in a shared-memory sys-
tem a process has access to data
belonging to another process without
its explicit cooperation. In the event
of failure, the consequences could be
widespread and catastrophic. A con-
sensus evolved that the important
distinction between interconnection
mechanisms is not the degree of
coupling (e.g., tight or loose), or its
bandwidth, but rather the protocols
for communication, and efficiency
versus protection tradeoffs.

Message broadcasting is another
important point. The issue is not

so much whether a broadcast capability
is needed, because a mechanism can
be included in almost any configura-
tion. The real question is how much
effort is needed or warranted to
produce an efficient broadcast mech-
anism. ‘‘Are we going to use broad-
casting as a basis for building our
systems?”’ We should examine our
goals to determine whether an efficient
broadcasting facility is required at
the lowest system levels. If it is only
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to be used occasionally, it can always
be realized at the higher levels, as
in Arpanet, by sending distinct
messages to all necessary processes.

Distributed operating systems. To-
day there are at least two general
approaches to designing and develop-
ing distributed processing systems.
One way is to interconnect and inte-
grate already existing computational
resources (usually heterogeneous) to
increase utilization and resource shar-
ing. Another way is to design and build
the system from scratch using off-the-
shelf hardware and software compo-
nents.

The Arpanet is an example of the
first approach; its building blocks
are traditional heterogeneous com-
puter systems. Distributed processing
on the Arpanet requires that processes
running under native operating sys-
tems on their respective hosts cooper-
ate through the communication sub-
net and various layers of communica-
tion protocol. RSEXEC and NSW,
network operating systems built on
top of existing host operating systems,
present a uniform access mechanism
to the various Arpanet host computer
system resources. They are described
in more detail in the article by Fors-
dick, Schantz, and Thomas in this
issue.

Two prominent examples of the
second approach are the previously
mentioned HXDP and Cm*, whose
operating system was designed to
support both parallel and distributed
computing.’ The Cm* operating sys-
tem provides (a) capability operations,
(b) message operations, (c) environment
creation, and (d) module creation and
loading. This multilevel modular oper-
ating system is written as a normal
user program. Its hierarchical struc-
ture permits larger systems to be built,
in which the interconnections and
dependencies of the different levels
grow linearly rather than exponentially
with the size of the system.

The major distinguishing character-
istics of a distributed operating system
—system-wide control of all resources
without global, centralized state infor-
mation—was widely discussed in the
two workshops, but no participant
could offer examples of such novel
systems or algorithms for providing
such control. For example, Arpanet
network operating systems (NSW and
RSEXEC) are only partially decen-
tralized and do not control all of the
host resources; Cm*’s first operating
system contains centralized state
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information; HXDP’s operating sys-
tem is being designed as a fully
decentralized executive but is not yet
implemented. However, the Arpanet
communication subnet is cited as a
simple model for fully decentralized
control; it uses local routing tables in
each IMP and an adaptive routing
strategy, in which the routing tables
are continuously updated to reflect
the probabilistically optimal routing
through the net. The DCS bidding
scheme in which resource allocation is
handled by having each processor’s
kernel respond to resource allocation
requests based on the knowledge of
its own availability may also provide

insight. Finally, the beginnings of a .

formalism for the difficult notion of
many operating systems cooperating
to provide resource management with
each having only a probabilistic know-
ledge of the global state is being
developed.*

Distributed data bases. The success-
ful implementation of many distrib-
uted systems requires solutions to
problems of data management in a
distributed environment. These prob-
lems include data allocation, concur-
rency control and update processing,
failure recovery, and query processing.

Given data access patterns, a set
of communication and storage resour-
ces, and performance criteria such
as availability requirements, how can
one allocate data objects to locations
in a way that minimizes some cost
function, such as access time? The
problem in general was not discussed
much at the workshops, but is receiv-
ing adequate attention in the distri-
buted data base community.® A special
case in which the design can take
advantage of geographic locality of
reference of data accessed by users
was discussed extensively, and is fur-

ther described in the article by Peebles

and Manning in this issue.

The. coordination of concurrent
updates initiated by multiple users
must be done in a way that preserves
the consistency of the data base. The
lack of a centralized locking mechanism,
together with communication delays
inherent in a distributed environment,
makes the required synchronization
more difficult than in a centralized
environment.

Most of the presentations in the
distributed data base area described
approaches to aspects of this problem;
Peebles and Manning discuss it
further. The ‘presentations included
a timestamp algorithm, to ensure

that each data base manager program
acts on the update requests in the
same sequence; a majority consensus
algorithm, under which updating of
all copies takes place if a majority of
data base manager programs agree
to it; and a design in which multiple
slave sites are coordinated by a single
master site for update processing.
Other presentations described a dis-
tributed locking mechanism and prob-
lems of deadlock detection and avoid-
ance.

When failures occur in system com-
ponents or in intercomponent com-
munications, the system must operate
in a resilient manner. Such failures
must not destroy the integrity of the
data base. Ideally, the system should
continue functioning, although per-
haps in a degraded mode.

Also presented was a solution to a
problem of failure recovery in a dis-
tributed environment® which involves
organizing update activities into trans-
actions that, though not themselves
atomic—incapable of subdivision—can
be treated as such in a limited sense.
Those transactions that update the
data base either make no change in
the stored data or carry out the entire
write, even if a crash occurs in the
middle of the write. Peebles and
Manning also discuss this approach.

Finally, locating stored data is not
a simple task. The system program
must determine where the data re-
quired by a query is stored; for a query
involving data stored at several loca-
tions, it must also determine an effi-
cient procedure for gathering and
merging the data required to satisfy
the query. Work is only beginning in
this area.

Load balancing. The problems of
automatic load balancing—that is,
optimally assigning tasks to proces-
sors—are analogous to the optimal
data allocation problem mentioned
previously. While little useful work
seems to have been done in the general
case, some researchers have investi-
gated graph theoretic and queuing
algorithms, which find the optimal
assignment of modules to maximize
performance or minimize costs in the
rather special but useful case of two-
processor systems. The algorithms are
further restricted to sequential execu-
tion of program modules. This restric-
tion is quite acceptable in 2 time-
shared host with one or more dedicated
satellites, systems for which these
algorithms were developed. In general,
the application programmer writes
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programs for a “virtual uniprocessor,”
without worrying about where a mod-
ule will reside. However, he may bind
a module to a particular processor if,
for example, the module requires
some resource unique to that pro-
cessor. The uniprocessor abstraction
provides transparency of distribution
similar to that achieved by a network
operating system.

Research has been done on the
problem of dynamically reassigning
(“migrating”’) a module from one
processor to the other during program
execution as a function of load on the
host. It has been shown that entire
clusters of related procedures migrate
from host to satellite, as the load on
the host increases. These migrations
take place only at a few critical “‘break-
point”’ values of host load. The cost
of this migration can be computed by
an extension of the graph theoretic
assignment algorithm. Experiments
have also verified simple algorithmic
predictions of the degree of perform-
ance improvement permitted by
migrations at these breakpoint values.’

An optimal assignment algorithm
for the three-processor case has been
developed, but it does not seem to
generalize to n processors. Despite
these useful techniques for simple
systems, solution of the general case
of the assignment problem and devel-
opment of algorithms for program
decomposition and partitioning re-
main as major tasks for designers
and users of distributed processing
systems. Furthermore, it is not even
clear what criteria should be used for
n-processor load balancing.

Interconnection structures. The ad-
vantages and disadvantages of differ-
ent physical interconnection structures
were topics of lively debate at the
workshops. An Arpanet-like topology
is considered reliable if at least two
paths are available between each source

~and destination. Message routing and
flow control algorithms, which prevent
saturation of the subnet, play an
important role in the efficient opera-
tion of this type of interconnection
structure. Rings are less reliable,
although they can provide a second
path, which is utilized only if a break
occurs in the first path. Routing and
flow control algorithms in rings are
considerably less complex than in more
general interconnection structures.

It was also argued that despite
superficial topological differences,
rings and buses are similar in many
respects. They both may have decen-
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tralized control; both may be two-
address systems; both are essentially
the same in terms of message synchro-
nization, sequencing, clocking, and
routing. One difference noted was that
message removal from the subnet is
done actively in a ring by a program
as part of the protocol whereas a cable
terminator does it passively in a bus.

Interconnection structures for tight-
ly coupled systems are important but
were not discussed to any great extent.
Little agreement was reached in dis-
cussing these issues except that more
work on comparisons and evaluations
of different interconnection structures
was required.

More fundamental research is nec-
essary to determine how the goals
of distributed processing should affect
the architecture and interconnection
structure of processors. Too often
investigators are forced to utilize
existing, off-the-shelf components in
their research. Since such equipment
is not designed for distributed proces-
sing, it limits progress toward the
goals of distributed processing. Quite
possibly, to attain a cost-effective
distributed processing system, we

must explore hardware/software trade- .

offs that are quite unconventional
by today’s standards—as Jensen's
article in this issue points out.

Open research areas

Numerous problems still face us
today in distributed processing. The
following informal outline of these
problems and short statements on
the state of the art are in no particular
order, and are far from complete. Fur-
thermore, it is too early to tell whether
many issues are inherent problems,
or whether they will be solved or
finessed by rapidly evolving technol-
ogy and understanding

e Both better definitions and a
better taxonomy are needed to cate-
gorize designs and experiments, and
to provide a common context in
which they may be discussed, com-
pared, and evaluated.

* No complete systems analysis or
synthesis methodology exists, either
for distributed processing or for
simpler, centralized systems—al-
though there does exist a small
collection of tactics in the areas of
physical and logical interconnec-
tions, resource allocation, and fault
tolerance, detection, and isolation.
We also know some of the advan-

tages and disadvantages of different
topologies, restricted almost exclu-
sively to hierarchies, stars, buses,
and rings (loops).

e What attributes of a problem make
it suitable or unsuitable for distri-
buted processing? How does one
weigh the advantages and dis-
advantages of distributed versus
centralized systems?

e How is reliability incorporated
into a distributed processing system
in terms of cost and performance?

e New algorithms are needed, to
solve generalized problems in reli-
ability, which is intimately related
to redundancy in resources. In turn,
however, redundancy causes prob-
lems with consistency, synchroniza-
tion, maintenance, security, and
other factors. Existing algorithms
do not adequately solve more than
specialized cases. In addition, we
need a language in which to talk
about reliability and a way to
measure it.

e How does the system detect,
categorize, isolate, and recover from
a failure? How do we treat multiple
failures? How much redundancy is
needed and which resources require
it to guarantee that recoverability
is possible? Providing hardware
recoverability is easier than providing
it in software, but both are needed
in distributed processing. Recover-
ability is a difficult research problem,
especially for decentralized software
doing error recovery. Hardware may
be needed to assist in recoverability,
as it is in error confinement.

¢ Protection and security may be
easier in remote locations because
those locations are isolated. On the
other hand, “‘thin, noisy communica-
tion pipes’” may make security
difficult between such locations.
Hardware assistance will probably
be required.

¢ In modeling and simulation for
distributed processing, existing tech-
niques of queuing theory and graph
theory are thus far inadequate, both
in terms of their representational
ability and their computational
tractability. Today, inputs to simu-
lations are poor. To get meaningful
results one actually may have to
build the distributed processing
system, measure it, and then put
these measurements into a simula-
tion. Such a requirement defeats a
major purpose of the simulation.
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However, Petri nets and similar for-
malisms offer some promise in the
modeling of asynchronous, concur-
rent execution of cooperating pro-
cesses.

e User-level control of distributed
processing requires a language con-
taining a message protocol with
process synchronization primitives,
as opposed to an Algol-like ‘‘block
structured”’ language with calls.
The primitives required to program
in a distributed processing environ-
ment have not, by and large, been
identified.

e Who partitions and assigns pro-
grams and data in a distributed
processing environment? What cri-
teria are used? What is the resolu-
tion of the partitioning—that is,
how finely are the modules divided?
What is the persistence of the
assignment, and when does it occur?

e Research is required in distributed
operating systems to determine effi-
cient methods of implementing
decentralized system-wide control.
In such a system, no one process
has more than probabilistic know-
ledge of the global state. Almost
all present operating system princi-
ples assume that the entire global
system state is centrally located
and available, except for some spe-
cialized I/0 information held by
peripheral controllers. In distributed
processing systems, the state infor-
mation is decentralized, and its to-
tality may be incomplete and incon-
sistent with the status of the entire
system at any particular moment.

e Resource management takes on
an added dimension of complexity
in distributed operating systems
as well. And, as discussed earlier,
how do you perform automatic
load sharing and balancing? using
what criteria?

® More precise analysis of the var-
ious means of interprocess com-
munication is required (shared
memory, messages, procedure calls,
ete.).

e Further investigation of broadcast
versus point-to-point (circuit or mes-
sage switching) communication is
needed, although it is currently
receiving some attention. An impor-
tant question is how to broadcast
to an unknown number of destina-
tions and still receive definitive
acknowledgements. Other issues in
communication research include
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traffic types, topology, routing, flow
control, reliability, error control,
cost, modeling and analysis, and
protocols.

* Interprocess communication in a
heterogeneous network environment
must be simplified, but differences
in internal data representations pre-
sent a problem that, as yet, has not
been satisfactorily solved. If com-
munication involves translation,
there still exist problems in preci-
sion, and data representation and
data type incompatibility. Among
the more difficult problems are
formats for passing programs,
passing pointers, and passing the
semantics (meaning) of data.

¢ Protocols for interprocess, inter-
processor, and interuser communi-
cation, and file transfer present
numerous problems. Their design
and implementation must render
them resilient to failure and abuse
by aberrant or malicious software.
Techniques are required for formal
specification and verification that
the protocol is correctly imple-
mented. Verification must include
proof that deadlocks are not possible
or can be solved.

e Many other problem areas not
peculiar to distributed processing
gain added complexity in a distri-
buted processing system. Among
these are synchronization of shared
variables, cost/benefit analysis, and
the need for debugging aids and
tools. M
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