
10 Computer

A MODNART

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

A
t its most basic, what engi-
neers do is pit their intel-
lect, training, experience,
and intuition—and that of
their design teams—against

an implacable, relentless adversary:
nature itself. I don’t mean that an actual
battle is going on; after all, only one of
the would-be combatants even knows
(or cares) that there is any contest.

When nature is the adversary, all that
stands between the engineered product
and disaster is the product designers’
foresight, wisdom, and skill. Nature
may not have maliciously chosen just
the right wind pattern to demolish the
Verrazano Narrows Bridge, but bridges
must not fall down no matter how the
wind is blowing. It may not literally be
true that nature is conspiring against
you, but it’s a very good way to view
the general engineering challenge.
Forewarned is forearmed.

Students of engineering are first
taught to “follow the rules”—guide-
lines for design that have proven over
time to result in systems that behave as
intended. Civil engineers learn about
traffic patterns and human driving
behaviors so they can design better
roads. They study strengths of materi-
als so that their bridges will be eco-
nomical and reliable. When a bridge
collapses, the rules are changed to
incorporate the hard-won learning.

THE ART OF ENGINEERING
But that’s not all there is to it. If engi-

neers only had to follow a set of direc-
tions, we wouldn’t need engineers;
computers and robots can do that

much. The real art of engineering, its
sine qua non, is in evaluating a pro-
posed design from every angle and
vantage point to make sure a design
will achieve its goals and prove reliable
over its intended lifespan.

When a simulation says a design is
working, ask whether the simulation is
correct and complete. If a formal proof
asserts that some aspect of the design
is correct, ask whether the proof itself
is trustworthy. What makes you so sure
the implementation technology will
work as needed? What if the product
specification itself has holes or blind
spots? What if your product’s buyers
like it so much that they begin using it
in ways you hadn’t intended—can you
anticipate that so the product will
gracefully accommodate its new uses?

If the designer knows what she’s
doing, the design incorporates existing
lore—only the desperate or suicidally
naive would attempt a product with no
familiar or known-trustworthy com-
ponents—but it can’t be based only on
known components.

The nature of engineering is to never
design exactly the same thing twice.
Every new design pushes the envelope
somewhere: performance, cost, relia-
bility, features, capacity. Inevitably,
some aspects of the new design will be
outside the existing experience base.
That’s the part of engineering you
don’t learn in school. And assuming
two competing design teams are tech-
nically proficient and reasonably well
led, it’s what these teams decide to do
in these unknown areas that will
largely determine which design ulti-
mately triumphs.

So how do you handle the wilder-
ness areas of your design, those places
beyond your comfort zone and the
safety of your tools and direct experi-
ence? I think the answer comes down
to how well you handle complexity.

WHAT IS COMPLEXITY?
People who study chaos theory speak

of a related complexity theory. They’re
trying to figure out why certain pat-
terns seem to appear at many different
levels of abstraction in natural phe-
nomena; fractals are an example.

Scientists and engineers learn early
that patterns often mean something
important, so when the chaos theorists
see the same pattern appear in seem-
ingly unrelated places, they sense that
there is something here worth investi-
gating. However, I don’t know if the
way they use the word “complexity”
is what I mean by that word. They
adopted the term before I did, but I
don’t know of a better one, so for the
sake of discussion, let’s assume the
chaos folks are chasing a different
chimera than I am.

Even though you can’t tell it by look-
ing at the math they use, physicists
strongly prefer simplicity in their mod-
els. Dissatisfaction with the “particle

Complexity
in Design
Bob Colwell

How well you
handle your
design comes
down to how
well you handle
complexity.

October 2005 11

zoo” that had accumulated over time
led Murray Gell-Mann to look for a
simpler underlying structure, which he
named quarks.

Physicists know well the pattern by
which an imperfect understanding of
what nature is exhibiting often leads to
a complicated, unsatisfying scientific
model that a simpler, more fundamen-
tal model will eventually replace. The
tendency for better knowledge to lead
away from complexity and toward
simplicity is a useful signpost for their
intuitions (www.santafe.edu/sfi/People/
mgm/complexity.html).

Another group that adopted the
word “complexity” is wine connois-
seurs. When they say a wine is com-
plex, they mean they think it tastes
good, and it strikes a good balance
between all the different ways a wine
can be measured. (Rich and deep, oaky
with a hint of fresh bougainvillea blos-
soms after a rainstorm on a Tuesday.
… Okay, I admit it—I don’t know any-
thing about wines, and I made that up.
But they may as well say that as what
they do say about wines, for all it helps
me in selecting one. “Dry” wines still
stain the rug.) I doubt that the wine
experts have much to offer design engi-
neers in terms of identifying and prop-
erly handling complexity, other than in
much-appreciated liquid form.

A fourth group that I mention with
considerable trepidation are the “intel-
ligent design” proponents. I do think
there are ideas here that can inform a
design team’s choices, if only we can
distinguish the essence of the irre-
ducible complexity argument from the
emotional tar pit from which it comes.

Irreducible complexity
The basic notion of irreducible com-

plexity is that, to achieve some end,
certain physical systems must have a
minimum amount of complexity. No
isolated pieces of that system are very
useful in and of themselves, but taken
as a whole, they could achieve some-
thing very useful indeed.

I’ve heard human eyesight described
in this way, for example: Without a

clear cornea, nothing else matters. But
if all you had was a cornea, without
the light-sensitive rods and cones, you
still couldn’t see. And if you have a
cornea plus light-detecting facilities,
you still need a neural pathway to
carry the information and some
amount of mental processing with
which to interpret it.

The intelligent design community
uses such arguments to attack evolu-
tion, expressing incredulity that some-
how all the necessary pieces could
develop together when none of them
are useful until the whole mechanism is
complete. It’s an interesting argument,
and there are reasonably compelling
counterarguments, but it’s not my
intention to take on this debate here. I
mention it only because I want to bor-
row the idea of “irreducible complex-
ity,” and attribution must be given.

Quantifying complexity
You can’t quantify complexity, but

you can feel it. In fact, during a lead-
ing-edge design, if anything, complex-
ity feels more real than many of the
design’s more quantifiable aspects.
Your simulation tools can tell you a
microprocessor’s projected die size, but
there’s still time before the tapeout.
Things happen, and as long as you
believe that aspect of the design is on
track, then for today it’s mainly a the-
oretical concern.

Performance and power dissipation
feel that same way. But complexity is
a monster you can hear breathing right
outside your cubicle. It whispers your
name during planning meetings, but if
you’re not paying attention you may
not hear it. Later on, you find yourself
at the moment of truth in a project,
suddenly realizing that things aren’t
right and it’s by no means clear if there

is a way to salvage them, let alone what
that way might be.

Complexity factors
There are some hallmarks to com-

plexity that I’ve noticed over the years.
I believe design complexity is a func-
tion of the

• number of ideas you must hold in
your head simultaneously;

• duration of each of those ideas;
and

• cross product of those two things,
times the severity of interactions
between them.

For instance, all else being equal, a
deep microarchitecture pipeline carries
more intrinsic complexity than a shorter
one. Different activities occur at each
pipe stage (otherwise why does that
pipestage exist?), and each activity can
take more than one clock cycle. If a
pipestage doesn’t exist, it can’t interact
with any others; conversely, if the
pipestage does exist, you must consider
those interactions and make sure they’re
all congruent with the project’s goals.

For nominal pipeline operation, this
kind of analysis is difficult but doable.
But for exceptional conditions, such as
reset, fault, interrupts, test scan, per-
formance counter interactions, power-
downs to lower thermals, breakpoints,
and stalls, the degree of intellectual dif-
ficulty can reach nightmarish propor-
tions.

Project unknowns
This definition of design complexity

makes it a little clearer why project suc-
cess is so sensitive to unknowns. The
very fact that these unknowns are, well,
unknown, means that they could inject
a wide range of behavior into the
design. That uncertainty range increases
the number of ideas you must simulta-
neously consider, and it might also
increase the predicted time durations
needed.

It doesn’t take much uncertainty to
make the complexity-derived behavior
range too big to mentally handle. And

An engineer’s
implacable, relentless

adversary is nature
itself.

12 Computer

A t R a n d o m

this is perhaps the most insidious issue
of all: When faced with a complex sit-
uation, you generally know that you
aren’t yet in command of all the neces-
sary details. This in itself isn’t alarm-
ing; it takes time to understand what
hundreds of people are doing or intend
to do. But you can’t leave it like that.

One option is to insist that all of the
unknowns be researched and quantified
so that your spreadsheet can tell you
what to do. But this scheme doesn’t
work. Your project doesn’t have enough
time or idle engineers to do this much
new work; besides, not everything you
want to know about your project is
knowable, much less quantifiable.

Complexity exacts a toll in many
ways. In my January 2004 At Random
column (“Design Fragility,” pp. 13-16),
I argued that complex designs are more
fragile and lead to more surprises
(which are always bad). Complexity
leads to longer development schedules;
it directly causes design errata; it fos-
ters suboptimal tradeoffs between com-
peting goals; it makes follow-on designs
much more difficult; and it’s cumula-
tive, with new designs inheriting all of
the complexity of the old and with new
complications layered on top.

Increased project complexity also
shrinks the available pool of engineers
who can help when things go awry.
Any competent designer can make easy,
straightforward choices, but for truly
gnarly situations, only wizards will do.
And there are never enough wizards.

Stanford’s John Hennessy once said
that it’s always possible to design some-
thing so complicated that you can never
get it right. As a project leader, are you
smart enough to mentally absorb the
remaining project unknowns on top of
what you already know to the extent
necessary to make good decisions on
any remaining tradeoffs (some of which
haven’t even surfaced yet)?

To some extent, everyone on the
design team has this same problem. In
considering a design’s overall com-
plexity, you’re making the “smart
enough” choice on their behalf as well.
If, after deep reflection, you believe you

have a practical grasp of the project’s
complexities, with enough margin to
handle the usual surprises down-
stream, great. Today will be a good day
and you won’t have to think about this
again until next week, when you must
confront the same issue again. But
what if you decide that things seem to
have gotten a bit too close to the edge?
What do you do then?

WHY NOT JUST SIMPLIFY
EVERYTHING?

Why not just make everything sim-
ple? As Einstein said, everything
should be as simple as possible, but no
simpler.

Have you ever taken a close look at
an acoustic grand piano? The compli-
cated mechanism in which the player’s
fingers cause hammers to fall on
strings, which are damped to varying
degrees and at varying times, is exquis-
itely subtle and quite involved. Perhaps
there’s a way to simplify that mecha-
nism without sacrificing the combina-
tion of tone and playability that has
selectively evolved over hundreds of
years. But it seems likely that most of
a piano’s complexity is necessary
because of how our fingers, feet, and
ears work. A skilled performer can
coax thunderous waves of sound or
delicate susurrations; the mechanics of
the keys have the requisite dynamic
range. This complexity works.

A simple bow and arrow can be eas-
ily made; if the materials and work-
manship are good, a serviceable
weapon can be achieved. But there are
other variations on that theme that
work better—a compound bow using
pulleys achieves much higher arrow
speed at less draw weight, but at the
cost of considerably higher complex-
ity in its design. For what it achieves,

It’s always possible to
design something so
complicated that you
can never get it right.

that complexity is well justified.
It’s also true that what initially looks

impossibly complicated may seem
quite reasonable after a period of study
and experience. In part, you just get
used to it; you find that you can
remember the various pieces, their
roles, and how they interact. You also
find ways of thinking about what those
pieces do, mental models that you
internalize—thus they constitute no
tax on your cognition.

I remember how thunderstruck I
was in college after struggling with
some formidable mathematical con-
cept only to have a fellow student
point out how simple it was when
viewed in the right way. This familiar-
ization effect must also be considered
when you’re judging how much com-
plexity a design project should include.

A design’s complexity must serve
a project’s major goals. If your
design is complicated but coher-

ent, challenging but understandable,
you may have struck a good balance
between irreducible complexity and
the project’s goals.

Strive to avoid creeping complexity,
the kind that arises from unintended
interactions among multiple unrelated
design decisions. Eschew complicated
machinery that isn’t clearly and prov-
ably necessary to attain one or more of
the major project goals. If you aren’t
sure you need some logic in your
design, keep asking questions until
someone either justifies it or agrees to
toss it overboard.

Entropy always drags a project in
the direction of increasing complexity;
things never get simpler on their own.
Except for bad wine. On Tuesdays. �

BBoobb CCoollwweellll,, the 2005 recipient of the
IEEE Computer Society/ACM Eckert-
Mauchly Award,, was Intel’s chief IA32
architect through the Pentium II, III,
and 4 microprocessors. He is now an
independent consultant. Contact him
at bob.colwell@comcast.net.

