
August 2005 85

E N T E R T A I N M E N T C O M P U T I N G

P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y

I n the past decade, high-perfor-
mance 3D graphics hardware has
become as ubiquitous as floating-
point hardware. The graphics pro-
cessing unit (GPU) has, alongside

the CPU, become one of the desktop’s
two major computational components.
Current GPUs consist of 200 to 300
million transistors and provide core
clock rates of 400 to 500 MHz. At the
high end, GPUs come with 256 or 512
Mbytes of memory and cost around
$500.

Developers design these GPUs to
operate on data streams consisting of an
ordered sequence of attributed primi-
tives like vertices or fragments. Com-
pared to conventional CPUs, GPUs
consist of high-bandwidth memories
and more floating-point hardware units.
For example, a current GPU such as the
Nvidia 6800 Ultra has a peak perfor-
mance of 40 Gflops and a memory
bandwidth of 35.2 Gbytes per second,
compared to 6.8 Gflops and 6 Gbytes
per second for a 3-GHz Pentium 4 CPU.
Further, GPU performance for graphics
applications throughput has been in-
creasing from two to two-and-a-half
times a year. This growth rate is faster
than Moore’s law as it applies to CPUs,
which corresponds to about one-and-a-
half times a year.

Significantly, the recently announced
Sony PlayStation 3 console will have a
programmable GPU, the Reality Syn-
thesizer, with a peak floating-point per-
formance of 1.8 Tflops and a cell
processor with a peak performance of
218 Gflops (www.us.playstation.com/
PressReleases.aspx?id=279). Desktop
and laptop systems with multiple GPUs
also have become available recently.

Deluxe computer gaming
The multibillion dollar video game

market is one of the key factors behind
innovations and growth in graphics
hardware. First-person-shooters like
FarCry and Doom 3 are driving the
demand for GPU crunching power.
These games use the increased pro-
cessing power of GPUs to run at max-
imum detail and antialiasing settings.

Gamers demand the most realistic
graphics possible, with every detail set

to maximum, all delivered to the dis-
play monitor at a consistently smooth
frame rate. The newest GPUs’ shading
and rendering hardware can make
real-time gaming look almost as good
as offline film rendering, thanks to
advanced visual effects such as high-
dynamic range lighting, parallax map-
ping, transparency, multisample anti-
aliasing, and shadows. The graphics
pipeline uses floating-point units along
with single-instruction and multiple-
data capabilities to generate these
effects at real-time frame rates.

GPGP
General-purpose computation using

graphics processors (GPGP) involves
the increasing use of GPUs’ computa-
tional power in scientific, database,

geometric, and other nongraphics
applications. These GPGP applications
use GPUs primarily designed for rapid
rasterization of geometric primitives to
shaded pixels on the screen.

To utilize the computational power
and memory bandwidth available in
these processors, many novel algo-
rithms use the rasterization capabilities
for nongraphics applications. Develop-
ers refer to these algorithms as GPU-
based to distinguish them from
traditional CPU-based algorithms that
do not utilize the computational power
of GPUs. GPU-based algorithms use
inherent pipelining, parallelism, and
single-instruction and multiple-data
(SIMD) capabilities, along with the
GPU’s vector-processing functionalities,
to perform the computations efficiently.

These algorithms also account for the
relatively low bandwidth available
between the CPU and GPU by per-

General-Purpose
Computations Using
Graphics
Processors
Dinesh Manocha, University of North Carolina at Chapel Hill

General-purpose graphics
processing extends
graphics-processor
use to nongraphics
applications.

86 Computer

E n t e r t a i n m e n t C o m p u t i n g

directly relates to the GPU’s rasteriza-
tion performance, which continues to
increase faster than the growth rate for
CPUs. In many cases, GPU-based algo-
rithms can outperform optimized CPU-
based implementations by almost an
order of magnitude.

The following GPU-based algorithms
were developed by the GAMMA re-
search group at the University of North
Carolina at Chapel Hill.

Sorting
Researchers have extensively stud-

ied this fundamental problem for more
than four decades. GPUSORT (http://
gamma.cs.unc.edu/GPUSORT) is a
novel GPU-based sorting algorithm
that exploits the computational power
of the graphics pipeline. This algorithm
uses simple texture-mapping opera-
tions to map the bitonic sorting net-
work to GPUs and effectively utilizes
the memory bandwidth through cache-
efficient memory accesses.

Figure 1 shows that our implemen-
tation outperforms most CPU-based
implementations. Further, we have

observed a factor-of-three improve-
ment in performance between two
successive GPU generations: Nvidia’s
GeForce 6800 and GeForce 7800. We
have also designed algorithms to sort
3D geometric primitives that we use
for real-time transparency computa-
tions in complex 3D environments
(http://gamma.cs.unc.edu/SORT/).

Database algorithms
Database management systems form

an integral part of many data ware-
housing applications and often demand
high processing power for fast query
execution. The GAMMA research
group has designed new algorithms to
perform fast relational database oper-
ations on GPUs including predicates,
Boolean combinations, selectivity and
aggregation queries, and join queries
(http://gamma.cs.unc.edu/DB).

We have used simple fragment pro-
grams to implement our algorithms,
and we have applied them to databases
with a million records. The results of
comparisons performed using SSE-
optimized CPU algorithms on high-end
Xeon processors indicate a per- for-
mance improvement of five to 20 times
using our GPU-accelerated database
queries on Nvidia GPUs. Further, we
have observed a performance growth
rate faster than Moore’s law in the
speed of these queries on three succes-
sive GeForce GPU generations: the
5950, 6800, and 7800.

Stream-mining algorithms
Many real-world applications such

as sensor networks, network and
financial monitors, and online trans-
action trackers analyze large volumes
of data streams, usually collected from
different sources. These data stream-
ing applications must process the data
elements in real time and use them to
estimate the relevant element’s fre-
quency. Given the limited memory
requirements and the need for compu-
tational resources, the underlying CPU
can become resource-limited.

We use the fast stream-processing
capabilities of GPUs to estimate the

forming a large fraction of the compu-
tation efficiently on the GPU, and use it
as an effective coprocessor. Further, they
take into account the poor performance
of programming constructs such as
branching instructions in the current
programmable GPU pipeline and use
alternate strategies for efficiently eval-
uating the computations, such as blend-
ing-based conditional assignments.
Finally, an emerging research area
focuses on designing cache-efficient
GPU-based algorithms for improved
performance.

GPGP APPLICATIONS
Researchers have designed GPU-

based algorithms for applications such
as database and data mining queries,
linear algebra computations, sorting,
fast Fourier transforms, motion plan-
ning and navigation, global illumina-
tion, bioinformatics, cryptography,
interference computations, and simu-
lation of physical phenomena includ-
ing fluid flows (www.gpgpu.org).

In most of these applications, the
underlying algorithm’s performance

0 2 4 20
0

1

2

3

4

6

GPUSort
GeForce 6800 Ultra

So
rti

ng
 ti

m
e

(s
ec

on
ds

)

5

6 8 10 12 14 16 18
Input size (in millions)

Optimized sorting using
Hyper-threading,
3.4 GHz Pentium IV

CLAPACK slasrt(),
3.4 GHz Pentium IV

GPUSort
GeForce 7800 GTX

Figure 1. GPUSORT algorithm comparison. The graph compares the performance of
optimized GPU- and CPU-based sorting algorithms. The GPU-based algorithm uses the
texture mapping and blending hardware on the GPU. Clapack is a hand-optimized
Quicksort algorithm. The optimized CPU-based sorting algorithm uses hyperthreading
for improved performance.

frequencies and quantiles in large data
streams. We use GPUSORT for his-
togram computations as well as to con-
struct epsilon-approximate quantile
and frequency summaries. This
approach has achieved a 200 percent
increase in speed over optimized CPU
algorithms on high-end PCs (http://
gamma.cs.unc.edu/STREAMING/).

Linear algebra computations
Researchers have studied dense lin-

ear algebra solvers for several decades
and used them in many high-perfor-
mance simulations such as fluid dy-
namics. We have used efficient GPU
representations to map and analyze the
performance of two direct linear sys-
tem solvers on GPUs—LU decomposi-
tion and Gaussian elimination. Our
algorithms, based on novel techniques
for streaming index pairs, swap rows
and columns and parallelize the com-
putation to utilize the multiple vertex
and fragment processors.

By using the peak memory band-
width available on GPUs, our algo-
rithms have attained a 200 percent
increase in speed over cache- and SSE-
optimized CPU implementations such
as ATLAS (http://gamma.cs.unc.edu/
LU-GPU).

Geometric algorithms
Geometric computations are funda-

mental in computer graphics, geomet-
ric and solid modeling, robotics, and
GIS and related applications. We have
developed new GPU-based algorithms
for performing Voronoi computations
(http://gamma.cs.unc.edu/voronoi),
proximity and collision computations
(http://gamma.cs.unc.edu/CULLIDE),
transparency- and shadow-generation
algorithms, distance fields (http://
gamma.cs.unc.edu/DiFi), Minkowski
sums, swept volumes, and line-of-sight
computation algorithms. This list in-
cludes novel algorithms for collision
detection between deformable and
breaking objects that can also handle
self-collisions, such as those shown in
Figure 2.

In many cases, we have obtained

more than an order-of-magnitude
improvement over prior CPU-based
algorithms, including collision detec-
tion and distance field computations.
We have used our algorithms for appli-
cations such as interactive walk-
throughs of complex virtual environ-
ments, terrain processing, dynamic and
cloth simulation, and simulating
avatar motion in virtual environments.

Motion planning and navigation
Motion planning is a classic robotics

problem with applications that include
virtual prototyping, surgical simula-
tion, navigation in virtual environ-
ments, and computer animation. We
have designed novel motion-planning
algorithms for dynamic environments
and deformable robots in complex
environments.

The algorithms for dynamic environ-
ments use GPUs’ rasterization power to
compute distance fields at interactive
rates and use the fields to guide the
robot toward the goal configuration.

The path planner for deformable
robots uses GPU-based algorithms for
collision avoidance between the robot
and the environment (http://gamma.
cs.unc.edu/FlexiPlan). Figure 3 shows
an application of this algorithm to
compute the path for a deformable
catheter used in liver chemoemboliza-
tion. The GPU-based algorithms out-

perform prior CPU-based implemen-
tations by more than an order of mag-
nitude.

SCIENTIFIC COMPUTATIONS AND
COMPUTER-GENERATED FORCES

The GAMMA research group has
designed GPU-based algorithms for a
variety of scientific applications, includ-
ing fluid simulation (http://gamma.cs.
unc.edu/IMPaSTo/), phase field meth-
ods (http://gamma.cs.unc.edu/ICE/),
and simulating deformable models. In
many of these cases, we reduced the
underlying numerical computations to

August 2005 87

Figure 2. Interactive collision detection
for cloth simulation. The cloth is modeled
with more than 13,000 triangles and a
GPU-based collision-detection algorithm
checks for self-collisions at interactive
rates. Model courtesy of Rasmus Tamstorf,
Walt Disney Feature Animation.

Figure 3. GPU-based path-planning
algorithm. This algorithm computed a
collision-free path for a deformable
catheter in liver chemoembolization. We
use GPU-based computations for collision
checking and avoidance between the
deforming catheter, with about 10,000
polygons, and the geometric model of the
arteries, represented by about 83,000
polygons. Model courtesy of William
Segars, Johns Hopkins University.

88 Computer

scalability and handling many entities
in CGF systems. This process includes
line-of-sight computations, route plan-
ning, and collision avoidance. Our
group has developed novel GPU-based
algorithms for these three problems
and integrated them into the OneSAF
Objective System (OOS). These GPU-
based algorithms have made a two-
orders-of-magnitude improvement in
line-of-sight computations within OOS
and an almost one-order-of-magnitude
improvement in overall simulation on
complex terrains.

S ome initial results from our work
with GPU-based algorithms for
nongraphics applications have

shown promise, achieving an order-of-
magnitude improvement in overall per-
formance in some cases. Encouraged

running fragment programs on oper-
ands represented in the texture mem-
ory.

Computer-generated forces (CGF)
emulate battlefield entities and units
whose tactical behaviors and decisions
are made in part either by human oper-
ators or automated-decision algo-
rithms. Over the past few years, some
of the major efforts in this area have
been directed toward Semi-Automated
Forces operational requirements.
OneSAF, a composable, next-genera-
tion CGF, can represent a full range of
operations, systems, and control
processes from individual combatant
and platform to battalion level. The
system has a variable level of fidelity
that supports all models and simula-
tion domains.

Real-time terrain reasoning presents
computational bottlenecks in terms of

by these results, we and many other
researchers and application developers
have begun using the GPUs as a co-
processor for other applications. �

Dinesh Manocha is a professor at the
University of North Carolina at
Chapel Hill. Contact him at dm@cs.
unc.edu.

E n t e r t a i n m e n t C o m p u t i n g

Editor: Michael Macedonia, Georgia
Tech Research Institute, Atlanta;
macedonia@computer.org.

Investing in Students
www.computer.org/students/

Lance Stafford Larson Student Scholarship best paper contest
✶

Upsilon Pi Epsilon/IEEE Computer Society Award for Academic Excellence

Each carries a $500 cash award.

Application deadline: 31 October

SCHOLARSH IP
MONEY FOR
STUDENT LEADERS

