
January 2005 107

I T S Y S T E M S P E R S P E C T I V E S

J ava 2 Enterprise Edition has
excelled at standardizing
many important middleware
concepts. For example, J2EE
provides a standard interface

for distributed transaction manage-
ment, directory services, and messaging.
In addition, Java 2 Standard Edition
(J2SE), which underpins J2EE, provides
a largely successful standard for Java
interaction with relational databases.

However, as the “J2EE’s Lack of
Application Programming Support”
sidebar explains, the platform has
failed to deliver a satisfactory applica-
tion programming model.

Sun Microsystems and the large
application server vendors have tradi-
tionally responded to this problem by
advocating development tools as a way
to hide J2EE’s complexity. However,
tools for managing J2EE artifacts
aren’t nearly as good as tools for work-
ing with the Java language, with their
sophisticated refactoring capabilities,
and J2EE tool support is generally infe-
rior to that of the Microsoft .NET plat-
form. Many J2EE tools are themselves
complex, as is the code they generate.

Many in the open source community,
especially smaller vendors, have chosen
the alternative of developing frame-
works designed to simplify the experi-
ence of building J2EE applications.
Popular frameworks such as Struts,
Hibernate, and the Spring Framework
play an important role in many of
today’s J2EE development projects.

WHY USE A FRAMEWORK?
A software framework is a set of

classes that make up a reusable design

for an application or, more commonly,
one tier of an application. Whereas
application code calls a class library to
perform services, a framework calls
application code and thus manages the
flow of control. This is often referred to
as the Hollywood principle: “Don’t
call us, we’ll call you.” The application
developer writes code that the frame-
work will then call at runtime.

Designing a framework for use in a
wide variety of unknown contexts is
challenging. However, the framework
approach is well adapted to the com-
plexities of J2EE development because
it can provide a simple, easy-to-use
model for application programmers.

Using a well-designed open source
framework offers many advantages:

• With a good framework, develop-
ers write only the code they need
to write; they don’t get bogged
down working directly with low-
level infrastructure APIs. This is
the key value proposition.

• A well-designed framework can
provide structure and consistency
to an application. The structure
will be clear to additional devel-
opers joining the project.

• An easy-to-follow framework can
promote best practice through
examples and documentation.

• Successful open source frame-
works are better tested than in-
house code.

• Frameworks usually become pop-
ular only if they have something
to offer. In-house frameworks are
often mandated, while a J2EE
project is likely to adopt an open
source framework only if it deliv-
ers clear benefits.

J2EE itself defines several frame-
works. For example, an Enterprise Java-
Beans (EJB) container or Servlet engine
relies on the Hollywood principle, with
the J2EE runtime instantiating and
invoking managed objects. Open source
Web application frameworks such as
Struts add their own framework over
the standard Servlet framework. The
emphasis here is on frameworks above
J2EE, which provide a simpler pro-
gramming model or other benefits.

OPEN SOURCE
FRAMEWORKS EMERGE

Most large J2EE projects have tradi-
tionally used in-house frameworks to
hide the platform’s complexity. Only
recently has a consensus emerged about
the generic problems that require a
generic solution, and around particu-
lar frameworks that provide good
generic solutions. There is now a clear
trend for frameworks to “standardize”
more of the infrastructure that formerly
was developed on a per-project basis.

One reason for J2EE frameworks’
sudden popularity is the platform’s
increased maturity. Developers now
recognize areas in which the standard
APIs are deficient and know from expe-
rience how difficult it is to write a good
framework to fill the gap. In addition,
many high-quality frameworks are

J2EE Development
Frameworks
Rod Johnson, Interface21

Despite some uncertainty,
open source frameworks
are increasingly important
to J2EE development.

108 Computer

I T S y s t e m s P e r s p e c t i v e s

now available that offer outstanding
documentation and the support of a
focused development team, without
imposing licensing fees.

Struts
The trend toward open source frame-

works began with Web applications. In
1999-2000, developers realized the defi-
ciencies of the Java Server Pages “Model
1” approach, in which JSP templates
handled incoming requests as well as
static template data. This meant that
JSPs often contained both business logic
and complex HTML or other markup.

With no standard framework in
place or J2EE specification support,
developers responded with their own
Front Controller implementations. These
moved business logic to Java classes,
thereby eliminating the need to maintain
such hybrid artifacts.

The Front Controller pattern is often
referred to as Web MVC after the clas-
sic Model View Controller architecture
pattern that is common to GUI devel-
opment in object-oriented languages.
(The name is somewhat misleading in
that Web MVC views must pull infor-
mation from the model, whereas in

classic MVC, the model pushes events
to views.)

Initial Front Controller implementa-
tions varied greatly in quality. The
Apache Software Foundation’s release
of Struts (http://struts.apache.org) in
2001-2002 changed all this. While not
an ideal Web MVC framework, Struts
worked well enough to quickly become
the de facto standard.

Struts demonstrated all the benefits
of open source frameworks such as
ease of recruiting personnel familiar
with the structure it imposed. By late
2002, it was the natural choice for
most J2EE Web applications, and
every serious J2EE Web developer was
familiar with it.

The near-universal adoption of Struts
commoditized an important chunk of
the J2EE architectural stack. Even con-
servative organizations accepted its use
in a prominent part of their software
infrastructure and agreed to the Apache
license’s terms.

Hibernate
The next domino to fall was persis-

tence. J2EE “out of the box” provided
two means for accessing persistent

stores—most often, relational data-
bases: JDBC, the J2SE standard API
for relational database management
system access; and entity beans, an EJB
component type dedicated to model-
ing a persistent entity.

JDBC’s error-prone programming
model inhibited object-oriented design
by forcing developers to work with rela-
tional concepts in Java code. Entity
beans, despite hype from Sun and major
J2EE vendors, likewise proved to be
cumbersome: Initially, the technology
was severely underspecified, not even
taking into account management of
relationships between persistent objects;
it made applications difficult to test; and
it offered an inadequate query language.
By 2003, developers largely ignored
entity beans despite enhancements in
EJB 2.0 and 2.1.

Early efforts. Solutions to the per-
sistence problem came in the form of
object-relational mapping (ORM),
which provides transparent persistence
for plain old Java objects (POJO), a
concept described in the sidebar, “The
Noninvasive Framework: Power to the
POJO.” Though not unique to Java,
ORM is especially popular in the Java
community—compared, for example,
to .NET developers, who seem to
regard it with suspicion.

Commercial ORM tools such as
Oracle’s TopLink (www.oracle.com/
technology/products/ias/toplink) were
well established by the late 1990s, but
only a minority of projects used them
because they were expensive, complex,
and appeared to conflict with the Sun-
sanctioned entity bean standard.
Nevertheless, they usually achieved
better results in practice than JDBC or
entity beans, thus proving the case for
POJO persistence.

Java Data Objects, which appeared
as a Java Community Process (www.
jcp.org) specification in 2001, offered
generic POJO persistence to any per-
sistent store (although implementations
typically provided their best support for
relational databases). However, Sun’s
lukewarm attitude toward JDO, cou-
pled with J2EE vendors’ lack of inter-

J2EE’s Lack of Application Programming Support

Despite its success in standardizing interaction with many low-level system
services, J2EE has largely failed to provide a satisfactory application pro-
gramming model. For example, Java Transaction API, Java Naming and
Directory Interface, and Java Message Service are designed to accommodate
middleware vendors; they impose too much complexity on code to be directly
used by application developers.

Similarly, Java Database Connectivity effectively shields J2SE and J2EE
application developers from the proprietary wire protocols used to commu-
nicate to databases, and it does a fairly good job making Java code portable
between databases. However, JDBC provides a cumbersome programming
model if used directly, with rich potential for errors—especially in exception
handling and managing resources such as connections.

J2EE’s major effort to provide a standard programming model is Enterprise
JavaBeans, a component model designed to let developers tap into standard
J2EE services such as transaction management, remoting, and thread man-
agement. Unfortunately, EJB has proven disappointing in practice—among
other problems, it places constraints on the use of inheritance and complicates
unit testing. As with other J2EE APIs, productivity and ease of development
and testing don’t seem to have figured highly as design criteria.

January 2005 109

opment of superior technologies.
The second factor was the arrival of

Hibernate (www.hibernate.org), the
first popular, fully featured open source
ORM solution. Hibernate offered
fewer features than TopLink but deliv-
ered a robust implementation of the
most desirable ones, and its focused
development team aggressively sought
improvements. Hibernate wasn’t par-
ticularly innovative, building on the
extensive understanding of ORM, but

est in POJO persistence at that time,
prevented the technology from achiev-
ing popularity.

Hibernate arrives. Radical change
came in 2002 for two reasons. First was
widespread realization that entity beans
had failed in practice, and that develop-
ers should ignore that part of the J2EE
specifications. By retarding rather than
advancing the progress of ORM in Java,
entity beans remain a prime example of
how poor specifications can stifle devel-

it offered a more intuitive program-
ming model than existing competitors
and removed at one stroke the cost and
ease-of-use barriers to ORM.

Around the same time, new com-
mercial products offered highly efficient
implementations of the JDO specifica-
tion that targeted relational databases,
giving developers a rich choice. Mean-
while, TopLink remained a good option,
with its license becoming friendlier to
developers.

Experience shows that developers don’t like frameworks
that impose excessive constraints on their code. Three novel
capabilities of emerging J2EE frameworks that can help
developers achieve the goal of a POJO-centric application
are transparent persistence, inversion of control, and aspect-
oriented programming.

Transparent persistence
This capability refers to the persistence of POJOs to

durable stores—typically, relational databases—without the
objects needing to make significant object-orientation con-
cessions. It bridges the object-relational impedance mis-
match with a framework responsible for mapping persistent
objects to rows in a relational database management sys-
tem, generating all the necessary Structured Query Language
code to retrieve and store objects.

ORM tools use techniques such as reflection, dynamic
byte code generation, or byte code enhancement in a post-
processing step to perform this mapping at runtime.

Transparent persistence frees domain objects from the
responsibility of managing their persistent representation,
enabling them to contain business logic where appropriate,
without mixing that with persistence operations. It can also
greatly increase productivity by eliminating the need to write
verbose and often error-prone persistence code.

Transparent persistence is a goal rather than a reality, but
the best ORM solutions come close to achieving it.

Inversion of control
A POJO model can be applied to business services

through IoC containers. These let business objects be con-
figured at runtime, and enjoy declarative services such as
automatic transaction management. Inversion of control is
a widely used term that in this case refers to a model in
which the framework instantiates application objects and
configures them for use.

Dependency injection is a pure Java type of IoC that does

not depend on framework APIs and thus can be applied to
objects that aren’t aware of—or may have been written
without knowledge of—the framework.

Configuration is via JavaBean properties (setter injection)
or constructor arguments (constructor injection). This means
that application code doesn’t implement any framework
interfaces; the framework uses reflection to configure it. The
framework injects dependencies such as collaborating objects
or configuration parameters, without application classes
needing to perform explicit lookup—as, for example, in the
traditional JNDI-based approach to J2EE configuration.

Dependency injection is a simple, but surprisingly pow-
erful, concept. Because the framework is responsible for
resolving dependencies on collaborating objects, it can intro-
duce a range of value-adds such as indirection to support
hot swapping and codeless generation of proxies that rep-
resent remote services.

Aspect-oriented programming
Dependency injection goes a long way toward delivering

a POJO application model but fails to address some impor-
tant requirements, such as the ability to apply declarative
transaction management—security checking, custom
caching, auditing, and so on—to selected methods.

Traditional solutions to this problem all have substantial
disadvantages. Using boilerplate code—for example, to start
and commit or roll back a transaction—results in the same
code being used in multiple methods. In addition, design
patterns such as the Decorator end up with cut-and-paste
code. And objects can only benefit special-purpose frame-
works such as EJB, which provide a fixed set of services, by
conforming to framework APIs and implicit contracts.

The Spring Framework provides a proxy-based AOP
solution that complements dependency injection. AspectJ,
AspectWerkz, and other AOP technologies are more ambi-
tious, enabling modification of class byte code for more
powerful weaving of aspects into an object model.

The Noninvasive Framework: Power to the POJO

110 Computer

I T S y s t e m s P e r s p e c t i v e s

ORM triumphs. Together, all these fac-
tors converged to make ORM the norm
rather than the exception by 2003-
2004. Although some projects still built
their own persistence frameworks, the
existence of Hibernate, TopLink, and
leading JDO implementations made this
extremely difficult undertaking unnec-
essary and indefensible.

Another part of the application stack
was now within the domain of popular
frameworks, yet large gaps remained.
For example, a typical Web application
using Struts and Hibernate still lacked
framework support for business logic.
Although the J2EE specifications ad-
dress some of these issues, primarily
through EJB, they don’t provide an ade-
quate application programming model.

Spring
J2EE frameworks have inexorably

moved into application frameworks,
which aim to provide consistent pro-
gramming in all tiers and thereby inte-
grate the application stack. The Spring
Framework (www.springframework.
org) is the dominant product in this
space, with adoption comparable to
that of Hibernate.

Spring essentially combines inversion
of control (IoC) and aspect-oriented
programming (AOP)—both described
in the sidebar, “The Noninvasive Frame-
work: Power to the POJO”—with a ser-
vice abstraction, to provide a program-
ming model in which application code
is implemented in POJOs that are largely
decoupled from the J2EE environment
(and thus reusable in various environ-
ments). Spring also provides an alterna-
tive to EJB in many applications—for
example, delivering declarative transac-
tion management to any POJO. The
Spring approach has proven to deliver
excellent results in many kinds of pro-
jects, from small Web applications to
large enterprise applications.

Other products in the same space
include HiveMind (http://jakarta.
apache.org/hivemind), which is con-
ceptually similar to Spring but has a
somewhat different take on IoC, and
NanoContainer (http://nanocontainer.

codehaus.org), which combines the
PicoContainer IoC container with ser-
vices. Collectively, these products are
referred to as lightweight containers to
distinguish them from traditional J2EE
approaches.

By decoupling a POJO model from
J2EE APIs, which are hard to stub at
test time, lightweight containers greatly
simplify unit testing. It’s possible to unit
test in a plain JUnit environment, with-
out any need to deploy code to an appli-
cation server or to simulate an ap-
plication server environment. Given the
increased—and deserved—popularity
of test-driven development, this has
been a major factor in lightweight
frameworks’ popularity.

WHAT’S NEXT?
Growing recognition and use of J2EE

development frameworks is measurably
reducing cost in many projects, as well
as delivering better speed to market and
higher maintainability. Today’s best
frameworks offer excellent quality, solid
documentation, and numerous books
and articles to support their use.
Nevertheless, two areas in particular
seem set for uncertainty in the J2EE
space: the conflict between J2EE “stan-
dards” and open source innovation,
and the growing importance of AOP.

The open source versus standards
conflict looms in two areas. In the pre-
sentation tier, JavaServer Faces (JSF),
backed by Sun and some of the largest
vendors, competes with entrenched
open source solutions such as Struts. In
the middle tier, EJB 3.0 offers a depen-
dency injection capability reminiscent of
a subset of Spring’s capabilities, mixed
with liberal use of J2SE 5.0 annotations.

In both areas, innovation has tradi-
tionally come from open source rather
than specifications. However, JSF is
somewhat indebted to ASP.NET, while
the open source Tapestry project (http://
jakarta.apache.org/tapestry)—a mature
implementation of many of the same
concepts—owes much to Apple’s com-
mercial WebObjects.

Likewise, EJB 3.0 seems to be
attempting to standardize dependency

injection, though it’s unclear what ben-
efit this brings—especially if it results in
the loss of important features, which
seems inevitable. EJB 3.0 also attempts
a new departure in entering the appli-
cation programming space: an area in
which the J2EE specifications haven’t
shone to date.

Meanwhile, AOP’s importance is
steadily increasing within the J2EE
community. While adoption isn’t yet
widespread, certain uses of AOP, such
as declarative transaction management,
are already popular. Solutions includ-
ing Spring and dynaop (http://dynaop.
dev.java.net), which offer what might
be called “AOP with training wheels,”
help to increase awareness of AOP. Full-
blown AOP technologies such as
AspectJ will likely experience wider
adoption in the next few years as well.

Significantly, the Java Community
Process shows no sign of any move
to standardize AOP, although JBoss
(www.jboss.com)—which is overtly
committed to working through the JCP
with the EJB 3.0 specification—is vig-
orously pursuing proprietary AOP
technology.

T he next-generation J2EE specifica-
tions as a whole are embracing
a simpler, POJO programming

model, similar to that already offered
by combinations such as Spring and
Hibernate. J2EE developers are sure to
benefit from recent trends, which are
driven more by practical experience
than by marketing hype. This is a wel-
come change from the platform’s early
days, when results often failed to live up
to the promise held out by vendors. �

Rod Johnson is CEO of Interface21, a
J2EE consultancy based in London.
Contact him at rod@interface21.com.

Editor: Richard G. Mathieu, Dept. of
Decision Sciences and MIS, St. Louis
University, St. Louis, MO; mathieur@slu.edu

