Paul S. Rosenbloom

University of Southern California

To realize the
compelling future of
computing studies,
researchers and
analysts must rethink
the traditional way of
partitioning and
structuring computer
science and
engineering. A
framework that USC
is already partially
implementing combines
an explicitly
interdisciplinary
academic focus with
a systems-oriented
perspective.

0018-9162/04/$20.00 © 2004 IEEE

Published by the IEEE Computer Society

PERSPECTIVES

A New Framework
or Computer

Science and

Engineering

raditionally, computing studies has two partitions—science and

engineering—that are separated by a line roughly at the com-

puter architecture level. Above the line is computer science and

below is computer engineering. Each of these two disciplines

then breaks into subspecialties, such as the decomposition of
computer science into theory, systems, and Al

Such an approach succeeds in dividing the field into affinity groups, but
it tends to isolate its respective parts and the systems that come from them.
This isolation, in turn, makes it difficult to incorporate either an integrative
systems-oriented perspective or the interdisciplinary work that is rapidly
becoming critical to computing studies’ future.! A more effective organiza-
tion for computer science and engineering (CS&E)—and one that helps point
the way toward its promising future—requires an intrinsically interdiscipli-
nary framework that combines academic and systems-oriented computing
perspectives.

My colleagues and I have been developing such a framework, which is
already changing key segments of CS&E at the University of Southern
California (USC). The framework reaggregates computer science and com-
puter engineering and then repartitions the resulting single field into analy-
sis and synthesis components.>* Analysis, the more academic of the two,
focuses on the nature of computing and the relationships between computer
science and other major scientific domains. The synthesis component builds
up computer engineering as a more pragmatic systems-oriented activity
through a hierarchy of related layers, each of which covers important inter-
disciplinary issues.

The framework is based on the notion that science is foremost about dis-
secting and understanding, and engineering is mostly about envisioning and
building. True, scientists also envision and build—integrated models, for
example—Dbut such activities are directed mostly at dissecting and under-
standing something. Likewise engineers also dissect and understand things,
but primarily to envision and build.

Extending these notions to computing studies, computer science is con-
cerned with dissecting and understanding the nature of computing and its
relationship to the other sciences, while computer engineering is concerned

November 2004

Table 1. Decomposition of binary computer science into subareas by domain and type of relationship.

C+L C+S

C+C

Implementation (/): Technology from the physical sciences (P), life sciences (L), or social sciences (S) is used to implement computation (C) or
computation is used to implement (possibly a model or function of) an aspect of one of the domains

c/* C/P: Silicon and quantum C/L: Biological and neural C/S: Wizard of Oz C/C: Languages, compilers,
computing computing operating systems, emulation
*/C P/C: Modeling and simulation, L/C: Artificial life, biomimetics, S/C: Artificial intelligence

data/information systems

systems biology

Interaction (¢): A symmetric relationship in which two domains interact as peers

Ce* and *<C

CeP and PeC: Sensors,
effectors, robots, peripherals

CeL and LeC: Biosensors

CeS and SeC: Human-computer
interaction, authorization

CeC: Networking, security,
parallel computing, grids

Embedding ([]): Some fragment of one domain is embedded in another

Cl*]

C[P]: Analog computing

C[L]: Autonomic systems

C[S]: Immersion

C[C]: Embedded monitoring
and testing

*[C]

P[C]: Embedded computing

L[C]: Cyborgs

with the more pragmatic aspects of envisioning and
building real computer systems. Our framework is
a product of these two threads.

COMPUTER SCIENCE:
AN INTERDISCIPLINARY ANALYSIS

The precomputer age saw the development of
three great scientific domains: The physical sciences
(P), which focus on nonliving matter; the life sci-
ences (L), which focus on living matter; and the
social sciences (S), which focus on humans and their
societies. Researchers investigated each domain in
its own right, but eventually the overlapping areas
also became critical targets. Much of the current
excitement flows around disciplines that represent
overlaps between P, S, and L, such as molecular
biology (P + L), cognitive neuroscience (S + L), and
human ecology (S + P).

After the invention of computers, a fourth great
scientific domain opened up: computer science (C),
which focuses on computing. At C’s core is the
essence of computing—computational theory, algo-
rithms, computer architecture, and so on. This is
C in isolation, or what can be called unary com-
puter science.

More broadly, however, the new domain con-
cerns not just C in isolation, but its relationships
with P, L, and S and with itself. Binary computer
science takes a step in this direction by combining
C with one other domain (P, L, S, or C). Much of
the intriguing work in computing over the past few
decades has been binary; for example, quantum
computing implements computing via physical phe-
nomena (P + C), and Al implements the function-
ality of human cognition via computing (S + C).

As Table 1 shows, it is possible to decompose
binary computer science along two dimensions: the
domain that combines with computing and the type
of relationship between the two domains (earlier
2D decompositions of computer science can be
found elsewhere*). What makes all this computer

Computer

S[C]: Cognitive prostheses

science is clearly C’s essential role. However, the
focus is not on C in isolation, but on C in the con-
text of interdisciplinary relationships with P, L, S,
and itself. The future of computer science is in these
relationships.

Implementation

An implementation relationship (/) holds be-
tween C and P, S, L, or C if one domain uses tech-
nology from the other to implement computation
or uses computation to implement (possibly a
model or function of) aspects of one of the other
domains. Silicon computing, for example, involves
the physical implementation of computing on sili-
con, C/P. Inverting this relationship yields modeling
and simulation—that is, the computational imple-
mentation of models of physical phenomena, P/C.
Neural computing involves implementing compu-
tation in a neural substrate model, C/L. Artificial
life inverts this by modeling a living organism on a
computer, L/C.

In Wizard of Oz experiments, a human imple-
ments computer functionality—in essence, emu-
lating a computer, C/S. In contrast, Al emulates a
human mind on a computer, S/C. Compilers imple-
ment computation—specified in a high-level lan-
guage—in a form that is closer to what the hard-
ware provides, C/C.

Implementation is the traditional relationship
among domains in a hierarchical analysis of sci-
ence, as seen, for example, in the interface between
physics and chemistry in physical chemistry and in
the relationship between chemistry and biology in
biochemistry.

Interaction

An interaction relationship (e) holds between C
and P, S, L, or C if they interact as peers. Table 1 has
only one row for interaction because it is a sym-
metric relationship. Interaction between computa-
tion and the physical world, CeP, focuses on input

and output devices in their various forms—whether
they are mundane devices such as keyboards and
printers or more exotic ones such as robotic sen-
sors and effectors. Interaction between computa-
tion and the biological world, CeL, concerns
sensors for biological substances and processes and
the effectors that can intervene in them.

Interaction between computation and people,
CeS, concerns primarily the traditional discipline
of human-computer interaction, but it also includes
issues such as the authorization processes that enti-
tle people to access computational resources.
Interaction among computers, CeC, concerns how
they communicate among themselves (networking)
and how groups of communicating computers
work together (parallel/distributed computing and
grids).

Embedding

Although embedding is somewhat like interac-
tion, in an embedding relationship one domain
wholly surrounds the other to the point that the
embedded component effectively becomes a part
of the embedding domain rather than maintaining
its own identity in a peer relationship.

An embedding relationship ([]) holds if some
fragment of one domain is embedded within
another. For example, analog computing involves
embedding a physical process within a computa-
tion to directly perform part of the computation,
C[P]. Embedded computing, in contrast, submerges
computation within the physical world, P[C].

Autonomic systems embed lifelike processes
within computing, C[L], while cyborgs are living
organisms that have computing embedded within
them, L[C]. Immersion submerges a human in a
computational environment, C[S], while cognitive
prostheses embed cognitive aids within a human,
S[C]. Finally, embedded monitoring embeds com-
puting within computing, C[C].

Beyond hinary computer science

Things rapidly get more complex if the number
of distinct domains or relationships between
domains increase, leading to ternary, quaternary,
and even higher orders of computer science. At
some point, counting loses its purpose, however,
and it makes more sense just to look at the actual
relationships.

Clearly, much of computer science’s future is
embodied in these higher-order relationships, and
all this work is highly interdisciplinary. In ubiqui-
tous computing, for example, people interact with
a world that embeds computing, SeP[C].

In intelligent robots, emulated human
thought interacts with the physical world,
(S/C)eP or P[S/C]eP. Embedded biomimetic
systems attempt to replace the faulty com-
ponents of living bodies with computation-
ally implemented models of the biological
components, L[L/C]. Virtual humans attempt
to implement the functionality of the human
body and mind, L[S]/C or (L[S]eP)/C.

Virtual organizations comprise teams of
people and intelligent agents working toward
common goals, S”¢(S/C)” (where 71 and 7 are expo-
nents representing arbitrary numbers of people and
agents interacting). Complex virtual worlds simu-
late not only the physical objects and processes
within some world, but also its social members and
behaviors, (PeS)/C, or even its living organisms and
computational infrastructure, (PeSeLeC)/C.

The exploding size and complexity of higher-
order possibilities make it difficult to cover this
space systematically. An intriguing open question
is how to use this space of possibilities. Can it aid
in generating useful ideas for new CS disciplines,
or will it serve primarily as a post hoc analysis and
organizational tool?

An equally intriguing question is the implication
for the academic CS&E enterprise. The field can
still be viewed according to the traditional decom-
position into theory, systems, Al, and hardware by
noting that C is predominantly theory, C + C s pre-
dominantly systems, C + S is predominantly Al,
and C + P is predominantly hardware.

Similarly, Peter Denning recently proposed
understanding much of computing in terms of “five
windows of computing mechanics,”¢ which map
onto this perspective as

o computation—what can be computed; limits
of computing, C;

o communication—sending messages from one
point to another, CeC;

e coordination—multiple entities cooperating
toward a single result, CeS7;

e qutomation—performing cognitive tasks by
computer, S/C, P[S/C]; and

o recollection—storing and retrieving informa-
tion, C+C.

Both the traditional approach and Denning’s
cover much of unary and binary CS&E, with the
notable exception of relationships with the life sci-
ences, C + L, but sustaining them organizationally
becomes increasingly difficult as the field focuses
more of its energies on higher-order interactions.

Virtual organizations

comprise teams
of people and
intelligent agents
working toward
common goals.

November 2004

Figure 1. Computer
engineering
hierarchy. The
layers emulate

the structure of
computer systems,
with each layer
contributing critical
capabilities to the
layers above it. The
pillars on either
side support all
layers with key
development
activities, such

as tool creation,
and deployment
characteristics,
such as security.

Organization

Interface

Environment
Grid

Development
Deployment

Network

Platform

An alternative organizational approach is to
restructure the academic CS&E enterprise explic-
itly around these relationships. The field as a whole
would then cover all the relationships, but the orga-
nizations within it would likely concentrate on only
a few relationships at a time. The CS department at
USC, for example, recently committed to focusing
on four themes in realizing computing’s future:

e computation—computational modeling (in-
cluding simulation and optimization) and new
and emerging computational models, espe-
cially in neural and genomic computing, P/C,
C/L;

e interaction—the coordinated investigation of
distributed information technology, CeC;

e autonomy—intelligent agents embodied in
both hardware (robots) and software, S/C,
P[S/C]; and

o immersion—the natural and effective interac-
tions among people (both real and virtual),
computation, and the world through improved
embeddings of each within the others, C[*],
*[C].

The CS department has reorganized its faculty,
research areas, hiring process, and course assign-
ments around these themes. The responsibility for
junior faculty recruiting is now divided across four
committees, one for each of the four themes. Both
courses and faculty are partitioned by theme, with
the associated curriculum and teaching responsi-
bilities for each theme assigned to that theme’s fac-
ulty group.

COMPUTER ENGINEERING:
A SYSTEMS-ORIENTED SYNTHESIS

Given that computer engineering is about envi-
sioning and building computer systems, its struc-
ture should emulate the structure of computer
systems, rather than the kind of decomposition that
computer science follows.

Computer

The hierarchy in Figure 1 is based on the notion
that computer systems are built from technology lay-
ers, with each layer capturing a coherent technology
thrust that builds on the layers below it and con-
tributes critical capabilities to the layers above it.

Computer engineering’s future is in the challenges
these layers present and the ways in which the lay-
ers build on each other to enable the construction
of real systems.

Hierarchy layers

At the bottom of the hierarchy is the platform
layer, which provides the computational hardware.
(In the grand scheme of things, lower layers do
exist, starting with the microsystems layer directly
under the platform layer and proceeding down to
fundamental physics, but these are beyond the
scope of this article.)

The main challenge at this layer is providing
abundant resources appropriately embedded within
the environments in which the system is to be used.
Physically, the platforms could be computers, per-
sonal digital assistants (PDAs), phones, sensor
nodes, equipment, watches, robots, satellites, or
cars.

Research issues at the platform layer include
breaking the von Neumann bottleneck to generate
petaflops of performance, reducing size and power
usage, combining computational and noncompu-
tational hardware (as in sensor nodes that combine
sensing, computing, power, and radios to monitor
physical environments), embedding computing into
challenging environments (such as outer space and
the human body), and developing mobile and
reconfigurable robotic platforms.

The network layer provides connectivity among
multiple platforms. The main challenge at this layer
is universal connectivity: providing 24/7 connec-
tivity among any number of different types of plat-
forms regardless of location.

Research issues at the network layer include cop-
ing with the constraints that nontraditional embed-
ding and communication environments impose,
end-to-end performance, security, and the dynamic
creation and management of large-scale networks.

The grid layer converts networks of platforms
into shared-resource pools. The main challenge is
in providing services that yield uniform access
across the full set of networked resources despite
their distribution across geographical and organi-
zational boundaries.

Grid-layer research issues include cross-domain
authorization and security, resource discovery and

allocation, data movement and interoperability,
workflow management, and metadata description.

The grid layer supports the development of envi-
ronments that embody the data, information,
knowledge, and models that a domain comprises
as well as the processes that operate on these envi-
ronments to generate additional content and
insights, such as calculation, fusion, reasoning, and
simulation.

The main challenge at the environment layer is
how to organize resources over entire domains of
interest, such as a science or engineering discipline,
a complex multiscale system such as the human
body, or a geographic region such as a city.
Research issues include how to acquire, organize,
and extract implicit conclusions from large bodies
of heterogeneous content and how to relate the
content to the real-world system it represents (for
example, using sensors that provide real-time links
between the two).

Users access environments through interfaces.
The main challenge at the interface layer is pro-
viding a low-overhead way for people to effectively
interact with the content at the environment layer.
Research issues include bidirectional communica-
tion of information and instruction, adaptation of
interactions to needs and situations, use of human-
human interaction modalities—such as natural lan-
guage, speech, gesture, sketches, and facial
expression—for human-environment interaction,
visualization techniques for very large data sets,
and mixed-initiative, multimodal dialogue.

On top of the interface layer is the organization
layer, where the main challenge is supporting
groups of people—and goal-oriented systems such
as agents and robots—in working toward common
goals. Research issues include dynamically creat-
ing such organizations; enabling them to span geo-
graphical, organizational, and political boundaries;
providing coordination and collaboration assis-
tance; and converting loose communities into effec-
tive organizations.

An integrated application scenario

Beyond the issues involved in developing indi-
vidual layers is the challenge of combining them
into fully functional systems. Consider the devel-
opment of a system for responding to unexpected
events in urban environments, such as large-scale
earthquakes or high-impact terrorist attacks (www.
isi.edu/crue/research/report.html).

Starting at the top of the hierarchy in Figure 1, at
the organization layer, response to unexpected
events requires the dynamic assembly of an effec-

tive response team from the available partic-
ipants—first responders from local, state, and
federal agencies; nongovernmental organiza-
tions such as the Red Cross; community
groups; the media; and private citizens—who
might not have worked together previously.
This virtual organization must be able to
access information through interfaces that are
quick and easy to learn and that facilitate
rather than interfere with getting the job done
in time-critical situations.

Through these interfaces, the participants
need access to the environment layer, where
sits all the relevant information about the met-
ropolitan area of concern—including build-
ings, roads, utilities, hospitals, schools, and
traffic patterns—and the dynamic data about the
unfolding event, preferably based on real-time sen-
sor data and reports. Participants should also be able
to integrate this information as needed to answer
questions and simulate hypothetical outcomes to aid
decision making.

A grid layer is required to support this virtual city
environment’s data and computational require-
ments, which itself must be supported by a network
that connects all participants and resources, and
makes the resources available even if the event has
unexpectedly damaged the infrastructure.

Finally, all this bottoms out in a set of computa-
tional platforms that the response team can use,
such as desktop computers, laptops, tablets, PDAs,
mobile phones, and supercomputers.

Combining these solutions provides what some
have called a cyberinfrastructure, in this case for
responding to unexpected events.

Development and deployment

Although this response system example illustrates
the comprehensiveness of the Figure 1 hierarchy in
terms of application functionality, it omits any
recognition of the range of tools required to develop
such a system or the range of system characteris-
tics that successful deployment requires. The two
pillars on either side of the hierarchy provide this
support—similar to the design and computer prac-
tices components that Denning proposed to com-
plement the five windows of computing mechanics.

Developing computer systems requires the sup-
port of languages and abstractions for expressing
large, complex systems; compilers and debuggers
for these languages; and design and construction
aids such as CAD systems, programming environ-
ments, learning and optimization algorithms, and
knowledge-acquisition tools. Computer system

A virtual
organization must
he able to access

information through

interfaces that
facilitate rather

than interfere with
getting the job done

in time-critical
situations.

November 2004

deployment requires dealing with issues such as
security and privacy, autonomy and robustness,
scalability, performance, dependability, usability,
and maintainability.

Development and deployment are pillars in
Figure 1 because these activities are critical across
all the hierarchy’s layers. Deploying secure systems,
for example, requires attending to issues not just at
the network layer, but at all layers. Security is
needed at the platform layer, where the designer
must isolate processes/threads from each other. At
the grid layer, the system must share services with-
out compromising security. At the environment
layer, issues of privacy come to the fore. At the
interface layer, user authorization is critical. Finally,
at the organization layer, trust issues arise, and pro-
tection from both intruders and insiders is vital.

At the USC Viterbi School of Engineering’s
Information Sciences Institute, a strong focus on
building working prototype systems goes hand-in-
hand with fundamental research, making it an
excellent test bed for the structure in Figure 1.
Indeed, the structure is proving particularly valu-
able in strategic planning. By laying out the scope
of what complete systems require, the structure aids

area of expertise? IEEE Computer Society

in identifying gaps in key technology coverage (such
as a relative weakness in research on development
tools). By laying out a main challenge at each layer
and delineating how the layers interrelate, we are
better able to develop larger-scale technology
thrusts across projects and subareas. For example,
we are taking a strongly cross-layer—and thus
cross-project and cross-subarea—perspective in
looking into the concept of a virtual city.

ather than partitioning CS&E at the top
Rlevel into hardware and software arenas,

our idea is to partition the combined disci-
pline into analysis and synthesis components and to
use an inherently interdisciplinary framework to
examine each. The framework’s interdisciplinary
perspective is already impacting key segments of
the CS&E enterprise at USC. Ideally, the work there
will also help point the way toward a compelling
future for CS&E as a whole. H

References

1. J. Hartmanis and H. Lin, eds., Computing the Future:
A Broader Agenda for Computer Science and Engi-
neering, Nat’'l Academy Press, 1992.

2. S. Amarel, “Computer Science: A Conceptual Frame-
work for Curriculum Planning,” Comm. ACM, June
1971, pp. 391-401.

3. B. Arden, ed., What Can Be Automated? The Com-
puter Science and Engineering Research Study, MIT
Press, 1980.

4. P. Denning et al., “Computing as a Discipline,”
Comm. ACM, Jan. 1989, pp. 9-23.

5. P. Denning, “Computer Science: The Discipline,”
Encyclopedia of Computer Science, A. Ralston and
D. Hemmendinger, eds., Nature Publishing Group,
2000, pp. 405-419.

6. P. Denning, “Great Principles of Computing,”
Comm. ACM, Nov. 2003, pp. 15-20.

I ooking for a community targeted to your

Technical Committees explore a variety
of computing niches and provide forums for
dialogue among peers. These groups influence
our standards development and offer leading
conferences in their fields.

Paul S. Rosenbloom is a professor of computer sci-
ence at the University of Southern California and
the associate director of the USC Viterbi School of
Engineering’s Information Sciences Institute. His
current focus is on conceptualizing, instigating, and
coordinating interdisciplinary efforts across com-
puter science and its interactions with other disci-
plines and society. Rosenbloom received a PhD in
computer science from Carnegie Mellon Univer-
sity. Contact him at rosenbloom@isi.edu.

Join @ community that fargets your discipline.

In our Technical Committees, you're in good company.

www.computer.org/TCsignup/

Computer

