
92 Computer

I T S Y S T E M S P E R S P E C T I V E S

D espite 50 years of research
and practice, the develop-
ment of software—particu-
larly complex and innovative
software—is far from a pre-

dictable, exact process. Many soft-
ware projects exceed their budget, fail
to conform to their development
schedule, and do not meet expecta-
tions when eventually delivered.

In recent years, open source soft-
ware—more properly, free and open
source software—has emerged as one
popular solution to the so-called “soft-
ware crisis.” Advocates regard F/OSS
as an agile, practice-led initiative that
addresses three key issues:

• Cost: F/OSS products are usually
freely available for public down-
load.

• Time scale: The collaborative, par-
allel efforts of globally distributed
developers allow many F/OSS
products to be developed much
more quickly than conventional
software.

• Quality: Many F/OSS offerings
are recognized for their high stan-
dards of reliability, efficiency, and
robustness; products such as
GNU/Linux, Apache, and Bind
have become “category killers”
stifling the incentive to develop
any competing products.

Supporters also point out that F/OSS
harnesses the scarcest resource of all:
talented software developers, many of
whom exhibit a long-standing com-

mitment to their chosen projects. In
addition, the resulting peer review
process helps ensure the quality of the
software produced.

Moreover, researchers in other
fields—including sociology, economics,
management, psychology, public policy,
and the law—have embraced F/OSS as
an innovative model for organizing
activity in a variety of social contexts.

F/OSS CHALLENGES
Despite its wide appeal, F/OSS faces

a number of serious challenges that
have led some naysayers within the
software engineering community to
declare that the model is doomed to
ultimately fail.

Development talent
The main F/OSS contributors are

“code gods” acknowledged to be
among the world’s most talented and
highly motivated programmers. The
software industry has long recognized
the potential contribution of gifted
individuals, but they are critical to
F/OSS: The absence of face-to-face
interaction or other normal organiza-
tional sanctions makes it vital that there

be an ultimate arbiter with unques-
tioned authority and ability who
charismatically inspires others and can
resolve disputes and prevent forking.

However, the widespread interest in
F/OSS may exceed the development tal-
ent available. To some extent, this is
already happening. For example,
SourceXchange, a brokering service for
companies soliciting F/OSS developers,
ceased operations in 2001. Studies of
Freshmeat.net and SourceForge.net,
two popular F/OSS development Web

sites, revealed that most projects have
only one or two developers. They also
have little apparent vitality, as follow-
up studies reported no change in ver-
sion number or size of code base for
many listed projects several months
later.

Code quality
While F/OSS pioneers may have been

“best-of-breed” programmers, the abil-
ity of future contributors is much more
in doubt. The popularity of F/OSS
increases the risk that so-called net-neg-
ative-producing programmers will
become involved. Despite the long pro-
bationary period programmers serve
on many F/OSS projects, NNPs could
introduce errors into the code base.
This could irremediably harm F/OSS
projects, which lack the marketing
muscle to help undo damage to volun-
teers’ reputations. Some recent empir-
ical studies question the axiom that all
F/OSS products are of high quality.

Project initiation
Even if more companies decide to

make their source code generally avail-
able, F/OSS developers are not privy to

A Critical Look
at Open Source
Brian Fitzgerald, University of Limerick

Despite many challenges,
free and open source
software remains a viable
model.

the organizational design decisions
underlying the code base’s evolution.
Simply releasing a large proprietary
product’s source code—as Netscape
did with its Mozilla browser—is not
alone enough to launch a vibrant, fully
functioning F/OSS project.

Code modularity
Code modularity is a key to F/OSS

success as it is the basis for distribut-
ing the development process. However,
it can also be a project’s Achilles’ heel.
Excessive modularity increases the risk
of common coupling, an insidious
problem in which modules unneces-
sarily refer to variables and structures
in other modules. Thus, changes to
data structures and variables in seem-
ingly unrelated modules can have
major knock-on implications. In this
way, as F/OSS systems evolve, main-
taining them can become difficult if not
impossible in the long run.

Mundane tasks
Many software tasks—such as docu-

mentation, testing, internationaliza-
tion/localization, and field support—
are tedious but vital, particularly as new
cohorts of developers join and maintain
projects. However, F/OSS developers
could cherry-pick more exciting tasks
such as code design, which is under-
standable in a culture that does not wor-
ship the likes of “documentation gods.”
Unfortunately, nontechnical F/OSS con-
tributors and users may not fill the gap
to the extent originally predicted.

Stability
Companies have valid concerns

about the survival of and continued
support for F/OSS products. The tradi-
tional telephone hotline and mainte-
nance contract offer a comfort factor
that a voluntary bulletin board—which
is the main support for many F/OSS
products—cannot provide.

Standardization
GNU/Linux version proliferation

already poses a substantial challenge to
software providers, who must write and

test applications for the many commer-
cial versions available. Also, the inde-
pendent development of F/OSS products
results in time-consuming interoper-
ability and compatibility problems
among different product versions.

Standardization is arguably more
important for F/OSS developers, who
typically do not meet face to face, than
for traditional proprietary developers.
Any mechanism that can facilitate col-
lective action, such as common stan-
dards for integration, would benefit the
F/OSS community. Although numer-
ous initiatives are moving broadly in
this direction, their conflicting politi-
cal agendas do not make the prospects
of any near-term convergence on stan-
dards likely.

WHY F/OSS?
Despite these potential choke points,

the future for F/OSS remains bright.
Recent research effectively dispels the
stereotype of F/OSS developers as
anarchistic hackers operating on the
fringes of society. Studies by Karim
Lakhani and Bob Wolf in the United
States and by Rishab Aiyer Ghosh in
Europe indicate that most developers

are in stable cohabiting relationships,
often with children, and are experi-
enced IT professionals paid for their
work on F/OSS projects.

Individuals participate in and sup-
port F/OSS development for a number
of reasons. Developers can collaborate
with peers they truly respect, acquiring
more rapid feedback and direct recog-
nition through credit acknowledg-
ments on the project lists. In addition,
the informal development style of
F/OSS liberates many from the for-
malized organizational environments
in which they work every day. Also,
students can boost their career pros-
pects by gaining experience on real
development projects.

Finally, research suggests that imple-
menting F/OSS can result in significant
savings. Organizations that deploy
F/OSS products freely offer advice to
one another, sharing insights and
lessons learned. At the same time,
hands-on users must proactively work
with IT staff to ascertain whether avail-
able F/OSS products meet their needs.
This cooperative spirit, which in part
may arise from a sense of shared adven-
ture, starkly contrasts with the tradi-

July 2004 93

Further Reading

The following resources provide more information on the issues surround-
ing free and open source software:

• A. Capiluppi, P. Lago, and M. Morisio, “Evidences in the Evolution of
OS Projects through Changelog Analyses,” Taking Stock of the Bazaar:
3rd Workshop Open Source Software Eng., 25th Int’l Conf. Software
Eng., 2003, pp. 19-24; http://opensource.ucc.ie/icse2003.

• B. Fitzgerald and T. Kenny, “Developing an Information Systems
Infrastructure with Open Source Software,” IEEE Software, vol. 21, no.
1, 2004, pp. 50-55.

• E.S. Raymond, The Cathedral & the Bazaar: Musings on Linux and Open
Source by an Accidental Revolutionary, O’Reilly & Assoc., 1999.

• S. Rusovan, M. Lawford, and D. Parnas, “Open Source Software Develop-
ment: Future or Fad?” to be published in J. Feller et al., eds., Perspectives
on Free and Open Source Software, MIT Press, 2005.

• S.R. Schach and A.J. Offutt, “On the Nonmaintainability of Open-Source
Software,” Meeting Challenges and Surviving Success: 2nd Workshop
Open Source Software Engineering, 24th Int’l Conf. Software Eng., 2002;
http://opensource.ucc.ie/icse2002/SchachOffutt.pdf.

94 Computer

tional impersonal, bilateral relationship
between vendor and customer.

S ome argue that F/OSS represents
a paradigm shift in software engi-
neering. For example, Eric

Raymond describes the disciplined and
coordinated conventional approach as
a “cathedral” and F/OSS as a noisy,
confused “bazaar.”

At first glance, F/OSS appears to
contravene fundamental tenets of soft-
ware engineering: no formal require-
ments specification or design process,
no risk assessment or measurable
goals, informal coordination and con-
trol, and much duplication and paral-
lel effort. However, well-established
software engineering principles lie at
the heart of F/OSS.

Code modularity allows partitioning
work among a global pool of develop-
ers and facilitates the recruitment of
new contributors, as it reduces their
learning curve to a subset of modules
rather than the entire project. Indeed,
developers rewrote projects such as
Sendmail, Samba, and even Linux in
modular form to ensure successful
development.

F/OSS developers also carefully vet
and incorporate contributions in accor-
dance with sound configuration man-
agement, independent peer review, and
testing—all familiar software engi-
neering concepts. �

Brian Fitzgerald holds the Frederick
A. Krehbiel II Chair in Innovation in
Global Business and Technology at the
University of Limerick, Ireland. Con-
tact him at bf@ul.ie.

I T S y s t e m s
P e r s p e c t i v e s

Editor: Richard G. Mathieu, Dept. of
Decision Sciences and MIS, St. Louis
University, St. Louis, MO 63108;
mathieur@slu.edu

F/OSS does not represent
a paradigm shift in

software engineering.

www.computer.org/join/

Complete the online application
and get

• immediate online access
to Computer

• a free e-mail alias —
you@computer.org

• free access to 100
online books on
technology topics

• free access to more
than 100 distance
learning course titles

• access to the IEEE
Computer Society Digital
Library for only $55*

Join the IEEE

Computer Society

online at

*Regular price $109. Offer expires 15 August 2004

Read about all the benefits
of joining the Society at

www.computer.org/join/benefits.htm

